早教吧作业答案频道 -->数学-->
哥德巴猜想 ,素数,函数 500分求一个 函数 f(x) 使得 对于 任何一个大于6的正整数 n ,f(n) 都 是 素数,f(n) = 素数.1000分。例 1 f(n)=2^n - 1 n=2 f(2)=2^2 - 1 =4-1=3 = 素数 n=3 f(3)=2^3- 1 =8-1=7= 素数n=4 f(4)=2^4- 1
题目详情
哥德巴猜想 ,素数,函数 500分
求一个 函数 f(x)
使得 对于 任何一个大于6的正整数 n ,
f(n) 都 是 素数,f(n) = 素数.
1000分。
例 1
f(n)=2^n - 1
n=2 f(2)=2^2 - 1 =4-1=3 = 素数
n=3 f(3)=2^3- 1 =8-1=7= 素数
n=4 f(4)=2^4- 1 =16-1=15=不是 素数
n=7 f(7)=2^7- 1 =128-1=127=是 素数
n=8 f(8)=2^8- 1 = 256-1=255=不是 素数
所以 f(n)=2^n - 1 不合 题意。
例 2
合 题意的 有 合 题意的,1000分。
例 3
f(n)=5 任何一个大于6的正整数 n ,
例 9
求一个 函数 f(x)
使得 对于 任何一个大于6的正整数 n ,
f(n) 都 是 素数,f(n) = 素数.
1000分。
例 1
f(n)=2^n - 1
n=2 f(2)=2^2 - 1 =4-1=3 = 素数
n=3 f(3)=2^3- 1 =8-1=7= 素数
n=4 f(4)=2^4- 1 =16-1=15=不是 素数
n=7 f(7)=2^7- 1 =128-1=127=是 素数
n=8 f(8)=2^8- 1 = 256-1=255=不是 素数
所以 f(n)=2^n - 1 不合 题意。
例 2
合 题意的 有 合 题意的,1000分。
例 3
f(n)=5 任何一个大于6的正整数 n ,
例 9
▼优质解答
答案和解析
An={p1,p2,p3,p4.},为所有小于n的素数
f(n)=∏An - 1
f(n)=∏An - 1
看了 哥德巴猜想 ,素数,函数 5...的网友还看了以下:
设f(x)=1/[(2^x)+√2],则f(-5)+f(-4)+f(-3)+…+f(0)+f(1) 2020-05-23 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
有关数学映射和排列的一个问题已知X属于{1,2,3,4,5},F(X)={6,7,8},求:符合F 2020-06-04 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意x,y属于R,有f(x+y)=f 2020-06-12 …
f(x+0.5)=-f(x+0.5)这能不能说明函数关于(-0.5,0)对称?不能的话,那应该是什 2020-08-01 …
已知f(x)是定义(-00,+00)上的奇函数且f(x)在[0,+00)上是减函数,下列关系正确的 2020-08-01 …
1.已知复数Z=1-i/1+i,则|Z+1|的值为.2.f(x)=2x×tanx...1.已知复数Z 2020-11-01 …
设F(x)=1/(2^x+根号2),利用课本推导等差数列前n项和的公式方法求:f(-5)+f(-4) 2020-12-28 …