早教吧作业答案频道 -->其他-->
已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有f(x1)−f(x2)x1−x2<0,给出下列命题:(1)f(2)=0;(2)直线x=-4是函数y=f
题目详情
已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有
<0,给出下列命题:
(1)f(2)=0;
(2)直线x=-4是函数y=f(x)图象的一条对称轴;
(3)函数y=f(x)在[-4,4]上有四个零点;
(4)f(2012)=f(0)
其中所有正确命题的序号为______.
| f(x1)−f(x2) |
| x1−x2 |
(1)f(2)=0;
(2)直线x=-4是函数y=f(x)图象的一条对称轴;
(3)函数y=f(x)在[-4,4]上有四个零点;
(4)f(2012)=f(0)
其中所有正确命题的序号为______.
▼优质解答
答案和解析
∵对任意x∈R,都有f(x+4)=f(x)+f(2)成立
当x=-2,可得f(-2)=0,
又∵函数y=f(x)是R上的偶函数
∴f(-2)=f(2)=0,
又由当x1,x2∈[0,2]且x1≠x2时,都有
<0,
∴函数在区间[0,2]单调递减
故函数f(x)的简图如下图所示:

由图可知:①正确,②正确,③错误,④正确
故答案:①②④.
当x=-2,可得f(-2)=0,
又∵函数y=f(x)是R上的偶函数
∴f(-2)=f(2)=0,
又由当x1,x2∈[0,2]且x1≠x2时,都有
| f(x1)−f(x2) |
| x1−x2 |
∴函数在区间[0,2]单调递减
故函数f(x)的简图如下图所示:

由图可知:①正确,②正确,③错误,④正确
故答案:①②④.
看了 已知函数y=f(x)是R上的...的网友还看了以下:
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
一道数学函数题,F(X,Y)=F(X)+F(Y)Y=F(X)的定义域为(0,+∝),且对于定义域内 2020-05-14 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
已知定义在R+上的函数f(x)同时满足下列三个条件:f(3)=-1;对任意x、y属于R+,都有f( 2020-06-03 …
设y=f(x)是定义在区间(a,b)(b>a)上的函数,若对任意x1,x2属于(a,b),都有|( 2020-06-03 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意x,y属于R,有f(x+y)=f 2020-06-12 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …
设y=f(x)是定义在区间(a,b)(b>a)上的函数,若对任意x1,x2属于(a,b),都有|(x 2020-11-02 …