早教吧作业答案频道 -->其他-->
函数f(x)=lnx−a(x−1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;(3)求证:不等式1lnx−1x−1<12对于x∈(1,2)恒成
题目详情
函数f(x)=lnx−
(x>0,a∈R).
(1)试求f(x)的单调区间;
(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;
(3)求证:不等式
−
<
对于x∈(1,2)恒成立.
a(x−1) |
x |
(1)试求f(x)的单调区间;
(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;
(3)求证:不等式
1 |
lnx |
1 |
x−1 |
1 |
2 |
▼优质解答
答案和解析
(1)函数的定义域是(0,+∞),导数f′(x)=
-
,
若a≤0,导数f′(x)在(0,+∞)上大于0,函数的单调增区间是(0,+∞);
若a>0,在(a,+∞)上,导数大于0,函数的单调增区间是(a,+∞),
在(a,+∞)上,导数小于0,单调减区间是(0,a)
(2)由第一问知道,当a>0时候,函数f(x)在(0,a)上递减,在(a,+∞)上递增,
所以要使得函数f(x)的图象存在唯一零点,当且仅当f(a)=0,即a=1
(3)要证
−
<
,即证
<
+
,即证lnx>
设g(x)=lnx−
,∴g′(x)=
−
>0,x∈(1,2)恒成立
∴g(x)min>g(1)=0,∴g(x)>0,即
−
<
1 |
x |
a |
x2 |
若a≤0,导数f′(x)在(0,+∞)上大于0,函数的单调增区间是(0,+∞);
若a>0,在(a,+∞)上,导数大于0,函数的单调增区间是(a,+∞),
在(a,+∞)上,导数小于0,单调减区间是(0,a)
(2)由第一问知道,当a>0时候,函数f(x)在(0,a)上递减,在(a,+∞)上递增,
所以要使得函数f(x)的图象存在唯一零点,当且仅当f(a)=0,即a=1
(3)要证
1 |
lnx |
1 |
x−1 |
1 |
2 |
1 |
lnx |
1 |
x−1 |
1 |
2 |
2x−2 |
x+1 |
设g(x)=lnx−
2x−2 |
x+1 |
1 |
x |
4 |
(x+1)2 |
∴g(x)min>g(1)=0,∴g(x)>0,即
1 |
lnx |
1 |
x−1 |
1 |
2 |
看了 函数f(x)=lnx−a(x...的网友还看了以下:
下列判断正确的是:A函数f(x)=x^2-2x/x-2是奇函数A函数f(x)=x^2-2x/x-2 2020-04-06 …
已知函数F[X]=a-1/|x|求证函数在0,正无穷上是增函数已知函数F[X]为R上的奇函数,当X 2020-06-03 …
一道高中数学题(函数)满意加分证明:1.若F(X)对任意实数X,都有F(A+X)=F(B-X)则F 2020-06-06 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
已知函数y=f(x)的定义域为[1,3],试问函数f(a+x)与f(a2-x)的和函数是否存在已知 2020-06-22 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
设a为实数,函数f(x)=x2+|x-a|+1,x属于R,(1)讨论f(x)的奇偶性;(2)求f( 2020-06-27 …
高数题函数已知f(x)是周期为5的连续函数,它在x=0的某个邻域满足f(1+sinx)-3f(1- 2020-07-31 …
对于积分上限函数∫(a,t)f(y)dy,知道被积函数是f(t).那么对于∫(a,t)f(x+y) 2020-08-02 …
函数与极限的题(详解)1.设函数f(x)=arctan1(x>1),f(x)=a(x=0),f(x) 2020-10-31 …