早教吧作业答案频道 -->其他-->
如图,已知点A(1,m),B(2,n)在反比例函数y=tx(x>0)的图象,设直线AB与x轴交于点C,AD⊥x轴于D点,(1)若m=n+1,求t的值;(2)若m,n是关于x方程:x2-2ax+a2-1=0的两根,问:在x轴上是否
题目详情

t |
x |
(1)若m=n+1,求t的值;
(2)若m,n是关于x方程:x2-2ax+a2-1=0的两根,问:在x轴上是否存在点E,使得△ABE与△ADC相似?若存在,请求出点E坐标;不存在,说明理由.
▼优质解答
答案和解析
(1)∵点A(1,m),B(2,n)在反比例函数图象上,
∴m=t,n=
t,
∵m=n+1,
∴t=
t+1,
解得t=2;
(2)x2-2ax+a2-1=0,
(x-a-1)(x-a+1)=0,
∴x-a-1=0,x-a+1=0,
解得x1=a+1,x2=a-1,
结合图形可知m>n,
∴m=a+1,n=a-1,
∴a+1=t,a-1=
t,
解得t=4,
∴反比例函数解析式为y=
,
∴点A、B的坐标是A(1,4)、B(2,2),
设直线AB的解析式为y=kx+b,
则
,
解得
,
∴直线AB的解析式为y=-2x+6,
当y=0时,-2x+6=0,
解得x=3,
∴点C的坐标为(3,0),
又∵A(1,4)、B(2,2),
∴AD=4,CD=3-1=2,且点B是AC的中点,
①如图1,当BE是直角边时,△AEC关于BE成轴对称,
∴∠AEB=∠CEB,
∵∠CEB+∠ACE=90°,∠CAD+∠ACD=90°,
∴∠CEB=∠AEB=∠CAD,
在△ABE与△CDA中,
,
∴△ABE∽△CDA,
在Rt△CDA中,AC=
∴m=t,n=
1 |
2 |
∵m=n+1,
∴t=
1 |
2 |
解得t=2;
(2)x2-2ax+a2-1=0,
(x-a-1)(x-a+1)=0,
∴x-a-1=0,x-a+1=0,
解得x1=a+1,x2=a-1,
结合图形可知m>n,
∴m=a+1,n=a-1,
∴a+1=t,a-1=
1 |
2 |
解得t=4,
∴反比例函数解析式为y=
4 |
x |
∴点A、B的坐标是A(1,4)、B(2,2),
设直线AB的解析式为y=kx+b,
则
|
解得
|
∴直线AB的解析式为y=-2x+6,
当y=0时,-2x+6=0,
解得x=3,

∴点C的坐标为(3,0),
又∵A(1,4)、B(2,2),
∴AD=4,CD=3-1=2,且点B是AC的中点,
①如图1,当BE是直角边时,△AEC关于BE成轴对称,
∴∠AEB=∠CEB,
∵∠CEB+∠ACE=90°,∠CAD+∠ACD=90°,
∴∠CEB=∠AEB=∠CAD,
在△ABE与△CDA中,
|
∴△ABE∽△CDA,
在Rt△CDA中,AC=
作业帮用户
2017-09-22
![]() ![]() |
看了 如图,已知点A(1,m),B...的网友还看了以下:
已知函数f(x)=|x-5|-1(1)解不等式f(x)小于等于4(2)若存在x属于R,使不等式f( 2020-05-20 …
对于函数f(x)=x,试判断是否存在正数m,使函数g(x)=1-mf(x)=(2m-1)x对于函数 2020-06-03 …
函数-已知函数f(x)=2mx22(4-m)x+1,g(x)=mx①若函数f(x)在x属于函数-已 2020-07-27 …
关于两道奇偶函数题1、已知f(x)是偶函数,当x大于等于0时,f(x)=x^2-2x+1,求当x小 2020-07-30 …
高一数学:对于函数f(x)(x属于D),若存在x0属于D使f(x0)=x0,则称(x0,x0)为f 2020-08-01 …
对于函数f(x)若存在x属于R使f(x)=x则称x是一个不动点fx=ax2+(b+1)x+(b-1) 2020-10-30 …
导数定义领域设f(x)在x=x.的某领域内有定义,在x=x.的某去心领域内可导,若f'(x.)存在且 2020-11-03 …
已知函数f(x)是定义在R上的奇函数,且当x大于或等于0时f(x)=x(x-2)求函数f(x)的解析 2020-12-08 …
高一数学函数定义在实数集R上的函数Y=F(X)是偶函数,当X大于等于0时,F(X)=-4X平方+8X 2020-12-08 …
导数存在问题f(x)=x的2X次方,X>0;f(x)=x+1,x小于等于零.为什么这个函数在0点处没 2021-02-11 …