早教吧作业答案频道 -->数学-->
已知函数f(x)=(ax2+x)ex在[-1,1]上是单调增函数,其中e是自然对数的底数,求a的取值范围.
题目详情
已知函数f(x)=(ax2+x)ex在[-1,1]上是单调增函数,其中e是自然对数的底数,求a的取值范围.
▼优质解答
答案和解析
由f(x)=(ax2+x)ex,得
f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,
①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,
当且仅当x=-1时取等号,故a=0符合要求;
②当a≠0时,令g(x)=ax2+(2a+1)x+1,
因为△=(2a+1)2-4a=4a2+1>0,
所以g(x)有两个不相等的实数根x1,x2,不妨设x1>x2,
因此f(x)有极大值又有极小值.
若a>0,因为g(-1)g(0)=-a<0,
所以f(x)在(-1,1)内有极值点,
故f(x)在[-1,1]上不单调.
若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,
因为g(0)=1>0,必须满足
,即
,所以−
≤a<0.
综上可知,a的取值范围是[−
,0].
f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,
①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,
当且仅当x=-1时取等号,故a=0符合要求;
②当a≠0时,令g(x)=ax2+(2a+1)x+1,
因为△=(2a+1)2-4a=4a2+1>0,
所以g(x)有两个不相等的实数根x1,x2,不妨设x1>x2,
因此f(x)有极大值又有极小值.
若a>0,因为g(-1)g(0)=-a<0,
所以f(x)在(-1,1)内有极值点,
故f(x)在[-1,1]上不单调.
若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,
因为g(0)=1>0,必须满足
|
|
2 |
3 |
综上可知,a的取值范围是[−
2 |
3 |
看了 已知函数f(x)=(ax2+...的网友还看了以下:
半正定矩阵已知E-A'A半正定.求证E-1/2(A'+A)半正定 2020-05-22 …
已知有A,B,C,D,E,F,取值1,2,3,4,5,6;则S=|A-B|+|B-C|+|C-D| 2020-05-23 …
设n(n≥2)阶矩阵A满足(E-A)(E+A)=O,其中E为n阶单位矩阵,若已知E+A的秩r(E+ 2020-06-12 …
(E-A)A=0,r(A)=r,则知(E-A)X=0至少有r个线性无关的解向量,为什么?不是就是r 2020-07-07 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey- 2020-07-09 …
(理)如图,已知矩形ABCD中,AB=3,BC=a,若PA⊥平面ABCD,在BC边上取点E,使得P 2020-07-15 …
已知e为自然对数的底数,若对任意的x∈[1e,1],总存在唯一的y∈[-1,1],使得lnx-x+ 2020-08-02 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得2x+y2ey 2020-08-02 …
已知e为自然对数的底数,若对任意的x1∈[0,1],总存在唯一的x2∈[-1,1],使得x1+x2 2020-08-02 …
已知函数f(x)=ax^2-4bx+2alnx(a,b属于R)(1)若函数y=f(x)存在极大值和极 2020-12-08 …