早教吧作业答案频道 -->其他-->
若函数f(x)=lnx,g(x)=x-2x.(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;(2)若对所有的x∈[e,+∞),都有xf(x)≥ax-a成立,求实数a的取值范围.
题目详情
若函数f(x)=lnx,g(x)=x-
.
(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;
(2)若对所有的x∈[e,+∞),都有xf(x)≥ax-a成立,求实数a的取值范围.
2 |
x |
(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;
(2)若对所有的x∈[e,+∞),都有xf(x)≥ax-a成立,求实数a的取值范围.
▼优质解答
答案和解析
(1)函数φ(x)=x-
-klnx的定义域为(0,+∞).
φ′(x)=1+
-
=
,记函数g(x)=x2-kx+2,其判别式△=k2-8
①当△=k2-8≤0即0<k≤2
时,g(x)≥0恒成立,
∴φ′(x)≥0在(0,+∞)恒成立,φ(x)在区间(0,+∞)上递增.
②当△=k2-8>0即k>2
时,方程g(x)=0有两个不等的实根x1=
>0,x2=
>0.
若x1<x<x2,则g(x)<0,∴φ′(x)<0,∴φ(x)在区间(x1,x2)上递减;
若x>x2或0<x<x1,则g(x)>0,∴φ′(x)>0,∴φ(x)在区间(0,x1)和(x2,+∞)上递增.
综上可知:当0<k≤2
时,φ(x)的递增区间为(0,+∞);当k>2
2 |
x |
φ′(x)=1+
2 |
x2 |
k |
x |
x2−kx+2 |
x2 |
①当△=k2-8≤0即0<k≤2
2 |
∴φ′(x)≥0在(0,+∞)恒成立,φ(x)在区间(0,+∞)上递增.
②当△=k2-8>0即k>2
2 |
k−
| ||
2 |
k+
| ||
2 |
若x1<x<x2,则g(x)<0,∴φ′(x)<0,∴φ(x)在区间(x1,x2)上递减;
若x>x2或0<x<x1,则g(x)>0,∴φ′(x)>0,∴φ(x)在区间(0,x1)和(x2,+∞)上递增.
综上可知:当0<k≤2
2 |
作业帮用户
2017-10-14
![]() ![]() |
看了 若函数f(x)=lnx,g(...的网友还看了以下:
一道有关函数单调性的问题已知f(x)的定义域为实数,且满足两个条件条件1对任意x,y属于实数有f(x 2020-03-30 …
对于标准正态分布N(01)的概率密度函数f(x)=下列说法不正确的是()A.f(x)为偶函数B.f 2020-05-14 …
下列说法正确的是:1.函数f(x)在两个区间A,B上都是单调减函数,则函数f(x)在AUB上也是单 2020-05-14 …
导函数单调区间已知f(x)=x^3 ax^2 x 1,a属于R.讨论函数f(x)的单调区间已知f( 2020-05-16 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
函数y=x-ln(1+x²)在(-∞,+∞),则在(1/2,1)内A.f(x)单调增加,曲线y=f 2020-07-29 …
如何证明单峰函数?设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0 2020-07-30 …
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有 2020-08-01 …
1.函数f(x)=2x*x-3│x│的单调减区间是什么?2.设y=f(x)再R上为单调函数,则方程 2020-08-02 …
f(x)=x²+2x+1,f(-1)=0,对任意实数xf(x)≥0,当x属于[-2,2]时,g(x) 2020-11-28 …