早教吧作业答案频道 -->数学-->
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有单调去见则由f'(x)>0或f'(x)<0可得f(x)的单调增或减区间.但当f'(x)=0时f(x)的单调性为什么?此时f(x)的
题目详情
有关函数单调性与导数的关系
对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有单调去见则由f'(x)>0或f'(x)<0可得f(x)的单调增或减区间.但当f'(x)=0时f(x)的单调性为什么?此时f(x)的极值为什么?
对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有单调去见则由f'(x)>0或f'(x)<0可得f(x)的单调增或减区间.但当f'(x)=0时f(x)的单调性为什么?此时f(x)的极值为什么?
▼优质解答
答案和解析
楼上说法不全.
f'(x)=0,如果在某个区间上恒成立,则f(x)是个常值函数,不增不减
如果是某几个点成立,则不影响整体的单调性.
比如 f(x)=x³,f'(x)=3x²,在x=0处,f'(x)=0,f'(x)≥0,f(x)=x³是一个增函数
f'(x)=0恒成立,则没有极值,
如果是某几个点成立,则利用一下结论判断
左正右负,则这个点是极大值点
左负右正,则这个点是极小值点.
f'(x)=0,如果在某个区间上恒成立,则f(x)是个常值函数,不增不减
如果是某几个点成立,则不影响整体的单调性.
比如 f(x)=x³,f'(x)=3x²,在x=0处,f'(x)=0,f'(x)≥0,f(x)=x³是一个增函数
f'(x)=0恒成立,则没有极值,
如果是某几个点成立,则利用一下结论判断
左正右负,则这个点是极大值点
左负右正,则这个点是极小值点.
看了 有关函数单调性与导数的关系对...的网友还看了以下:
1若f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内 2020-05-23 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
高等数学问题设函数y=f(x)在区间[a,b]上可导,且方程f(x)=0在区间(a,b)内有两个不 2020-07-30 …
若关于X的二次方程x2+(m-1)x+1=0在区间0,2上有零点关于x的二次方程x2+(m-1)x 2020-07-31 …
如图所示的直角坐标系xOy中,x<0,y>0的区域内有沿x轴正方向的匀强电场,x≥0的区域内有垂直 2020-07-31 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)分别是f( 2020-08-01 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x) 2020-08-01 …
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有 2020-08-01 …
已知单调连续函数y=f(x)在下列离散点上的函数值,求方程f(x)=0在区间1,2内根的近似值,使 2020-08-02 …
(2013•绵阳模拟)如图所示的坐标系xOy中,x<0,y>0的区域内有沿x轴正方向的匀强电场,x≥ 2020-11-12 …