早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…�如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2

题目详情
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…�
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3?2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有(  )个.
A.1
B.2
C.3
D.4
▼优质解答
答案和解析
因为数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,
所以分数列的项数是偶数和奇数讨论.
若数列含偶数项,则数列可设为1,21,22,…,2m-1,2m-1,…,22,21,1
当m-1≥2008时,S2009=
1×(1?22009)
1?2
=22009-1,所以①正确;
当1004≤m-1<2008时,S2009=2
1×(1?2m)
1?2
-
1×(1?22m?2009) 
1?2
=2m+1-22m-2009-1,所以④正确;
若数列含奇数项,则数列可设为可设为1,21,22,…,2m-2,2m-1,2m-2…,22,21,1
当m-1≥2008时,S2009=22009-1;
当1004≤m-1<2008时,所以S2009=2
1×(1?2m?1) 
1?2
+2m-1-
1×(1?22m?1?2009) 
1?2
=3?2m-1-22m-2010-1,所以③正确.
故选C