早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1.直线L过点P(3,2),它与直线L1,x+3y-9=0及x轴围成一个等腰三角形(底边在x轴上),求L方程2.三角形ABC顶点B(3,4),AB边上的高CE所在直线方程为:2x+3y-16=0,BC边上中线AD所在直线方程为2x-3y+1=0,求A,

题目详情
1.直线L过点P(3,2),它与直线L1,x+3y-9=0及x轴围成一个等腰三角形(底边在x轴上),求L方程
2.三角形ABC顶点B(3,4),AB边上的高CE所在直线方程为:2x+3y-16=0,BC边上中线AD所在直线方程为2x-3y+1=0,求A,C坐标.
▼优质解答
答案和解析
1.因为:它与直线L1,x+3y-9=0及x轴围成一个等腰三角形(底边在x轴上),
则所求的直线L的斜率与直线X+3Y-9=0的斜率刚好成互为相反数.
那么,所求的直线L的斜率为:K=1/3.
则直线L的方程为:Y-2=1/3(X-3),
即,X-3Y+3=0.
2.直线CE的斜率为Kce=-2/3,
直线AB的斜率为Kab=-1/(-2/3)=3/2.
直线AB的方程为:Y-4=3/2*(X-3),
即,3X-2Y-1=0,
中线AD所在直线方程为2x-3y+1=0,
解方程得,X=1,Y=1.
则点A坐标为(1,1,).
设,点C坐标为(X,Y),点D坐标为(m,n),
m=(x+3)/2,n=(y+4)/2,
而,点D在直线2X-3Y+1=0上,有
2*(X+3)/2-3*(Y+4)/2+1,
即,直BC的方程为:2X-3Y-5=0,.(1)
2x+3y-16=0,.(2)
解(1),(2)式方程得
X=21/4,Y=11/6.
则点C的坐标为(21/4,11/6).
A,C坐标为:A(1,1),C(21/4,11/6).