早教吧作业答案频道 -->数学-->
如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析
题目详情
如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.

(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标.

(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标.
▼优质解答
答案和解析
(1)∵对称轴为直线x=2,
∴设抛物线解析式为y=a(x-2)2+k.
将A(-1,0),C(0,5)代入得:
,
解得
,
∴y=-(x-2)2+9=-x2+4x+5.
(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.
设P(x,-x2+4x+5),
如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,
∴MN=ON-OM=-x2+4x+4.

S四边形MEFP=S梯形OFPN-S△PMN-S△OME
=
(PN+OF)•ON-
PN•MN-
OM•OE
=
(x+2)(-x2+4x+5)-
x•(-x2+4x+4)-
×1×1
=-x2+
x+
=-(x-
)2+
,
∴当x=
时,四边形MEFP的面积有最大值为
,
把x=
时,y=-(
-2)2+9=
.
此时点P坐标为(
,
).
∴设抛物线解析式为y=a(x-2)2+k.
将A(-1,0),C(0,5)代入得:
|
解得
|
∴y=-(x-2)2+9=-x2+4x+5.
(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.
设P(x,-x2+4x+5),
如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,
∴MN=ON-OM=-x2+4x+4.

S四边形MEFP=S梯形OFPN-S△PMN-S△OME
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=-x2+
9 |
2 |
9 |
2 |
=-(x-
9 |
4 |
153 |
16 |
∴当x=
9 |
4 |
153 |
16 |
把x=
9 |
4 |
9 |
4 |
143 |
16 |
此时点P坐标为(
9 |
4 |
143 |
16 |
看了 如图,对称轴为直线x=2的抛...的网友还看了以下:
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的 2020-04-05 …
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的 2020-05-15 …
初三数学 二次函数:如图所示,已知抛物线与x轴相交于A(m,0)如图所示,已知抛物线与x轴相交于A 2020-05-16 …
已知抛物线y=ax²+bx与x轴的交点A(1,0).B(0,3),且过点C(0,-3) (1)求抛 2020-05-16 …
已知抛物线经过A(-2,0)B(1,0)C(0,2)三点……已知抛物线经过A(-2,0)B(1,0 2020-06-06 …
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1, 2020-07-26 …
已知抛物线y=-x的平方+bx+c经过点A(3,0),B(-1,0)(1)求抛物线的解析式;(已知 2020-08-01 …
已知:抛物线与x轴交于点A(-2,0),B(8,0),与y轴交于点C(0,4)25.已知:抛物线与x 2020-11-27 …
二次函数高手入!NO.1抛物线y=ax^2+bx+c当c大于0时,抛物线交y轴正半轴,c小于0时,抛 2020-12-08 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …