早教吧作业答案频道 -->数学-->
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x
题目详情
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.
▼优质解答
答案和解析
(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,
∵抛物线经过原点,
∴0=a(0-1)2+2,
∴a=-2,
∴抛物线解析式为y=-2x2+4x.
(2)∵抛物线经过原点,
∴设抛物线为y=ax2+bx,
∵h=-
,
∴b=-2ah,
∴y=ax2-2ahx,
∵顶点A(h,k),
∴k=ah2-2ah2=-ah2,
抛物线y=tx2也经过A(h,k),
∴k=th2,
∴th2=ah2-2ah2,
∴t=-a,
(3)∵点A在抛物线y=x2-x上,
∴k=h2-h,又k=ah2-2ah2,
∴h=
,
∵-2≤h<1,
∴-2≤
<1,
①当1+a>0时,即a>-1时,
,解得a>0,
②当1+a<0时,即a<-1时,
解得a≤-
,
综上所述,a的取值范围a>0或a≤-
.
∵抛物线经过原点,
∴0=a(0-1)2+2,
∴a=-2,
∴抛物线解析式为y=-2x2+4x.
(2)∵抛物线经过原点,
∴设抛物线为y=ax2+bx,
∵h=-
| b |
| 2a |
∴b=-2ah,
∴y=ax2-2ahx,
∵顶点A(h,k),
∴k=ah2-2ah2=-ah2,
抛物线y=tx2也经过A(h,k),
∴k=th2,
∴th2=ah2-2ah2,
∴t=-a,
(3)∵点A在抛物线y=x2-x上,
∴k=h2-h,又k=ah2-2ah2,
∴h=
| 1 |
| 1+a |
∵-2≤h<1,
∴-2≤
| 1 |
| 1+a |
①当1+a>0时,即a>-1时,
|
②当1+a<0时,即a<-1时,
|
| 3 |
| 2 |
综上所述,a的取值范围a>0或a≤-
| 3 |
| 2 |
看了 已知,抛物线y=ax2+bx...的网友还看了以下:
已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a与b之间满足关系:|ka+b| 2020-05-14 …
高一数学向量问题已知向量a=(cosa,sina).b=(cosb,sinb),且a与b之间满足关 2020-05-14 …
解析一道高中数学题(有关并集)写出终边在y轴上的角的集合.之后得出:S1={a|a=90度+k*3 2020-05-19 …
已知直线y=x与双曲线y=k/x(k>0)的一个交点为A,且OA=2,求反比例函数的解析式已知直线 2020-05-20 …
已知关于X的一次函数Y=X加1和反比例函数Y=X分之K的图像都经过点(2,M).(1)求反比例函数 2020-05-23 …
反比例函数Y=k分之2x和一次函数y=2x-1,其中一次函数图像进过点(a,b),(a+1,b+k 2020-06-06 …
已知a,b是方程x^2-2(k-1)x+k+1=0的两实根……已知a,b是方程x^2-2(k-1) 2020-06-07 …
n乘以(n+k)分之一=k分之一乘以n乘(n+k)分之k=k分之一乘以[n分之一减n+k分之一 2020-06-12 …
已知反比例函数y=x分之k,当x=负的3分之1时y=-6,求:1)这个函数解析式.2)若一次函数y 2020-06-27 …
反比例函数y=k分之x经过点(-1,-5分之1),求函数解析式我知道怎么做就是-5分之1和k怎么算 2020-07-12 …