早教吧作业答案频道 -->数学-->
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x
题目详情
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.
▼优质解答
答案和解析
(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,
∵抛物线经过原点,
∴0=a(0-1)2+2,
∴a=-2,
∴抛物线解析式为y=-2x2+4x.
(2)∵抛物线经过原点,
∴设抛物线为y=ax2+bx,
∵h=-
,
∴b=-2ah,
∴y=ax2-2ahx,
∵顶点A(h,k),
∴k=ah2-2ah2=-ah2,
抛物线y=tx2也经过A(h,k),
∴k=th2,
∴th2=ah2-2ah2,
∴t=-a,
(3)∵点A在抛物线y=x2-x上,
∴k=h2-h,又k=ah2-2ah2,
∴h=
,
∵-2≤h<1,
∴-2≤
<1,
①当1+a>0时,即a>-1时,
,解得a>0,
②当1+a<0时,即a<-1时,
解得a≤-
,
综上所述,a的取值范围a>0或a≤-
.
∵抛物线经过原点,
∴0=a(0-1)2+2,
∴a=-2,
∴抛物线解析式为y=-2x2+4x.
(2)∵抛物线经过原点,
∴设抛物线为y=ax2+bx,
∵h=-
| b |
| 2a |
∴b=-2ah,
∴y=ax2-2ahx,
∵顶点A(h,k),
∴k=ah2-2ah2=-ah2,
抛物线y=tx2也经过A(h,k),
∴k=th2,
∴th2=ah2-2ah2,
∴t=-a,
(3)∵点A在抛物线y=x2-x上,
∴k=h2-h,又k=ah2-2ah2,
∴h=
| 1 |
| 1+a |
∵-2≤h<1,
∴-2≤
| 1 |
| 1+a |
①当1+a>0时,即a>-1时,
|
②当1+a<0时,即a<-1时,
|
| 3 |
| 2 |
综上所述,a的取值范围a>0或a≤-
| 3 |
| 2 |
看了 已知,抛物线y=ax2+bx...的网友还看了以下:
三角形ABC在平面直角坐标系内点A(0,3倍跟3)B(负3,0)C(2,0)一个动点先由点A沿y轴 2020-04-26 …
在平面直角坐标系中,A(4,0),B(0,-4),C(0,4),点M为射线OA上A点右侧一动点在平 2020-05-13 …
如图所示,在直角坐标xoy的第一象限中分布着指向-y轴方向的匀强电场,在第四象限中分布着垂直纸面向 2020-05-14 …
已知正方形ABCD的直角坐标系中A点(0,0),B点(2,2),则正方形ABCD的面积为 2020-06-03 …
已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1, 2020-07-26 …
求数学高手已知二元函数f(x,y)在点(0,0)的某个领域内连续,且lim(f(x,y)-(x^2 2020-07-31 …
在A点(0度,20度N)的正西方向是()Why?A.20度N,30度EB.20度N,30度Wc.10 2020-12-27 …
在A点(0度,20度N)的正西方向是 2020-12-27 …
在a点(0度,0度)的正西方向是什么经纬度 2020-12-27 …
椭圆Tx2/a2+y2/b2=1(a>b>0)的左右焦点分别为f1f2焦距为2c若直线y=根3(x+ 2021-01-13 …