如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=,则EG.
如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=
,则EG .

【考点】相似三角形的判定与性质;正方形的性质.
【分析】连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,由点F,点G关于直线DE的对称,得到DF=DG,根据正方形的性质得到AD=CD,∠ADC=∠A=∠BCD=90°,推出Rt△AFD≌Rt△CDG,证得△FDG是等腰直角三角形,推出四边形APHQ是矩形,证得△HPF≌△DHQ,根据全等三角形的性质得到HP=HQ,推出△MHQ≌△DHQ,根据全等三角形的性质得到DH=MH=
,DQ=QM=
,求得CH=DH=
,通过△DQH∽△CEH,根据相似三角形的性质即可得到结论.
【解答】连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,
∵点F,点G关于直线DE的对称,
∴DF=DG,
正方形ABCD中,
∵AD=CD,∠ADC=∠A=∠BCD=90°,
∴∠GCD=90°,
在Rt△AFD与Rt△CDG中,
,
∴Rt△AFD≌Rt△CDG,
∴∠ADF=∠CDG,
∴∠FDG=∠ADC=90°,
∴△FDG是等腰直角三角形,
∵DH⊥CF,
∴DH=FH=FG,
∵HP⊥AB,HQ⊥AD,∠A=90°,
∴四边形APHQ是矩形,
∴∠PHQ=90°,
∵∠DHF=90°,
∴∠PHF=∠DHQ,
在△PFF与△DQH中,
,
∴△HPF≌△DHQ,
∴HP=HQ,
∵∠PHF=90°﹣∠FHM,∠QHM=90°﹣∠FHM,
∴∠PHF=∠QHM,
∴∠QHM=∠DHQ,
在△MHQ与△DHQ中,
,
∴△MHQ≌△DHQ,
∴DH=MH=
,DQ=QM=
,
∴CH=DH=
,
∵点M为AD的中点,
∴DM=3,∴DQ=QM=,
∴HQ=
=
,
∵∠QDH=∠HEG,
∴△DQH∽△CEH,
∴
,
即
,
∴EG=
.
故答案为:
.

1、已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()a.f(x 2020-04-25 …
若函数F(x)=f(x)*g(x)是偶函数,g(x)的图象关于原点对称,且f(x)的图象关于原点对 2020-05-16 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
关于拉格朗日中值定理两个前提条件:f(x)在[a,b]上连续,在(a,b)上可导.若[a,b]换成 2020-06-22 …
图钉帽的面积为图钉尖的面积的2000倍,若用力F把图钉压入木块,则钉帽与钉尖的压力与压强的大小关系 2020-06-26 …
图钉帽的面积为图钉尖的面积的2000倍,若用力F把图钉压入木块,则钉帽与钉尖的压力与压强的大小关系 2020-06-26 …
物理公式的比例关系A,F=Gm1m2/r^2可知F与r的平方成饭比B,F=mv^2/r可知r与F成饭 2020-11-01 …
已知f(x)=(1/2)x,a,b∈R+,A=f(A+B)/2,G=f根号ab...则AGH的大小关 2020-11-03 …
关于泰勒公示展开求证:已知f(x)在[a,b]存在二阶导数,f'(a)=f'(b)=0,则在存在c∈ 2020-11-23 …