早教吧作业答案频道 -->数学-->
1、已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()a.f(x1)<f(x2)b.f(x1)=f(x2)c.f(x1)>f(x2)d.无法确定2、已知函数y=f(x)在R上是减函数,则y=f(|x+2|)的单调递减区间是()a.(-∞,+∞)b.(-∞,-2)c.(2,+
题目详情
1、已知函数f(x)=ax2 +2ax+4(a>0),若x1<x2,x1+x2=0,则( )
a.f(x1)<f(x2) b.f(x1)=f(x2) c.f(x1)>f(x2) d.无法确定
2、已知函数y=f(x)在R上是减函数,则y=f(|x+2|)的单调递减区间是( )
a.( -∞,+∞) b.( -∞,-2) c.(2,+∞) d.( -2,+∞)
填空题
1、函数y=-√- x2-2x+3的单调递增区域为( )
2、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)= x2-2x,则f(x)在R上的表达式为( )
大题:
已知二次函数f(x)= ax2+bx满足:1.f(1-x) =f(1+x)2.f(x)= x有两相等实根
1求f(x)
a.f(x1)<f(x2) b.f(x1)=f(x2) c.f(x1)>f(x2) d.无法确定
2、已知函数y=f(x)在R上是减函数,则y=f(|x+2|)的单调递减区间是( )
a.( -∞,+∞) b.( -∞,-2) c.(2,+∞) d.( -2,+∞)
填空题
1、函数y=-√- x2-2x+3的单调递增区域为( )
2、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)= x2-2x,则f(x)在R上的表达式为( )
大题:
已知二次函数f(x)= ax2+bx满足:1.f(1-x) =f(1+x)2.f(x)= x有两相等实根
1求f(x)
▼优质解答
答案和解析
1.选A.
因为对称轴是x=-1,抛物线开口向上,点x1与x2关于原点对称.结合图象可知,选A.
2.选D
填空题:1.这是以及-1为圆心,以2为半径,在x轴上方的半圆,所以单调递增区域是[-3,-1]
2.f(x)=(|x|/x)*x2-2x
大题:
1.由f(1-x) =f(1+x)知x=1是对称轴,所以-b=2a,
2.由f(x)= x有两相等实根,得ax2+bx=x的判别式等于0,所以(b-1)2=0
解得b=1,a=-0.5
因为对称轴是x=-1,抛物线开口向上,点x1与x2关于原点对称.结合图象可知,选A.
2.选D
填空题:1.这是以及-1为圆心,以2为半径,在x轴上方的半圆,所以单调递增区域是[-3,-1]
2.f(x)=(|x|/x)*x2-2x
大题:
1.由f(1-x) =f(1+x)知x=1是对称轴,所以-b=2a,
2.由f(x)= x有两相等实根,得ax2+bx=x的判别式等于0,所以(b-1)2=0
解得b=1,a=-0.5
看了 1、已知函数f(x)=ax2...的网友还看了以下:
设A是n阶矩阵(n≥2),试证 R(A*)=n若R(A)=n,=1若R(A)=n-1 =0若R(设 2020-04-05 …
设a为三阶矩阵,有特征值λ1,λ2,λ3,其对应的特征向量分别是ξ1=[1,0,0],ξ2=[1, 2020-04-13 …
设a为三阶矩阵,有特征值λ1,λ2,λ3,其对应的特征向量分别是ξ1=[1,0,0],ξ2=[1, 2020-04-13 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
sql语句子查询中,无限子集,但是我想通过最上面的某一子集id,查询它下面的所有子集.如果说有1, 2020-04-27 …
数学填空题1.最小的四位数是(),最大的三位数是(),它们的差除以0.01,商是().2.当a÷0 2020-05-13 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
若a是不为1的有理数,则我们把1/1-a的差倒数...定义:a是不为1的有理数,我们把1/1-a称 2020-05-16 …
a是不为1的有理数,我们把(1-a)分之1称为a的差倒数.如:2的差倒数是(1-2)分之1=-1, 2020-05-16 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …