早教吧作业答案频道 -->其他-->
已知函数f(x)=x2-4-k|x-2|.(1)若函数y=f(x)为偶函数,求k的值;(2)求函数y=f(x)在区间[0,4]上的最大值;(3)若函数y=f(x)有且仅有一个零点,求实数k的取值范围.
题目详情
已知函数f(x)=x2-4-k|x-2|.
(1)若函数y=f(x)为偶函数,求k的值;
(2)求函数y=f(x)在区间[0,4]上的最大值;
(3)若函数y=f(x)有且仅有一个零点,求实数k的取值范围.
(1)若函数y=f(x)为偶函数,求k的值;
(2)求函数y=f(x)在区间[0,4]上的最大值;
(3)若函数y=f(x)有且仅有一个零点,求实数k的取值范围.
▼优质解答
答案和解析
(1)因为y=f(x)为偶函数,所以f(-1)=f(1),解得k=0,
经检验k=0符合题意. …(2分)
(2)当x∈[0,4]时,f(x)=
,
因为y=f(x)在区间[0,4]上图象由两段抛物线段组成,且这两个抛物线开口均向上,
所以其最大值只可能是f(0)、f(2)、f(4)其中之一. …(4分)
又f(0)=-2k-4,f(2)=0,f(4)=12-2k,显然f(4)>f(0).
所以当k<6时,所求最大值为f(4)=12-2k;
当k≥6时,所求最大值为f(2)=0.…(6分)
(3)由题意得,方程x2-4-k|x-2|=0有且仅有一个解,显然,x=2已是该方程的解.…(8分)
当x≥2时,方程变为(x-2)( x+2-k)=0;
当x<2时,方程变为(x-2)( x+2+k)=0.
从而关于x的方程x+2-k=0(x≥2)有且仅有一个等于2的解或无解,且x+2+k=0(x<2)无解.
又x=2时,k=4,此时x=-6也是方程的解,不合题意.
所以关于x的方程x+2-k=0(x≥2)无解,且x+2+k=0(x<2)无解.
所以,k<4且k≤-4.
综上,k≤-4,即实数k的取值范围为(-∞,-4].…(10分)
经检验k=0符合题意. …(2分)
(2)当x∈[0,4]时,f(x)=
|
因为y=f(x)在区间[0,4]上图象由两段抛物线段组成,且这两个抛物线开口均向上,
所以其最大值只可能是f(0)、f(2)、f(4)其中之一. …(4分)
又f(0)=-2k-4,f(2)=0,f(4)=12-2k,显然f(4)>f(0).
所以当k<6时,所求最大值为f(4)=12-2k;
当k≥6时,所求最大值为f(2)=0.…(6分)
(3)由题意得,方程x2-4-k|x-2|=0有且仅有一个解,显然,x=2已是该方程的解.…(8分)
当x≥2时,方程变为(x-2)( x+2-k)=0;
当x<2时,方程变为(x-2)( x+2+k)=0.
从而关于x的方程x+2-k=0(x≥2)有且仅有一个等于2的解或无解,且x+2+k=0(x<2)无解.
又x=2时,k=4,此时x=-6也是方程的解,不合题意.
所以关于x的方程x+2-k=0(x≥2)无解,且x+2+k=0(x<2)无解.
所以,k<4且k≤-4.
综上,k≤-4,即实数k的取值范围为(-∞,-4].…(10分)
看了 已知函数f(x)=x2-4-...的网友还看了以下:
定义R上的函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y)+k(k为常数).(1) 2020-05-13 …
f(x)在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)若f(k*3 2020-05-22 …
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f( 2020-06-08 …
读一读,判断下列每组字母是否含有相同的音素,含有的画勾.1:()w,y.2:()H;k.3:()X 2020-07-29 …
单调增函数f(x)对任意x,y∈R,满足f(x+y)=f(x)+f(y),若f(k*3^x)+f( 2020-08-01 …
已知函数f(x)=lnx+k/x,x属于R,若函数f(x)的单调减区间为(0,1),求实数k的值. 2020-08-01 …
已知函数f(x)=2lnxk(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知函 2020-10-31 …
已知函数f(x)=2lnx+k(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知 2020-10-31 …
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x 2020-12-08 …
若函数f(x)与g(x)都是周期函数,周期分别是T与K,且T/K=a,则都是集上的周期函数证明:若函 2021-01-20 …