早教吧作业答案频道 -->其他-->
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f
题目详情
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2012型增函数”,则实数a的取值范围是
(−∞,
)
1006 |
3 |
(−∞,
)
.1006 |
3 |
▼优质解答
答案和解析
∵f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,
∴f(x)=
,
又f(x)为R上的“2012型增函数”,
当x=0时,f(x+2012)=f(2012)=|2012-a|-2a,f(0)=0,
由f(2012)>f(0)解得:a<
;
当x>0时,由定义有|x+2012-a|-2a>|x-a|-2a,即|x+2012-a|>|x-a|,
两边平方,整理得:a<1006+x,从而a≤1006;
当x<0时,分两类研究:
(1)若x+2012<0,即x<-2012,则有-|x+2012+a|+2a>-|x+a|+2a,
即|x+a|>|x+2012+a|,两边平方,整理得:a<-1006-x,
∵-x>2012,∴a≤1006;
(2)若x+2012>0,则有|x+2012-a|-2a>-|x+a|+2a,即|x+a|+|x+2012-a|>4a,
当a≤0时,显然成立;
当a>0时,由于|x+a|+|x+2012-a|≥|-a-a+2012|=|2a-2012|,故有|2a-2012|>4a,
必有2012-2a>4a,解得a<
;
综上,对x∈R都成立的实数a的取值范围是 a<
,
即a的取值范围是(−∞,
).
∴f(x)=
|
又f(x)为R上的“2012型增函数”,
当x=0时,f(x+2012)=f(2012)=|2012-a|-2a,f(0)=0,
由f(2012)>f(0)解得:a<
2012 |
3 |
当x>0时,由定义有|x+2012-a|-2a>|x-a|-2a,即|x+2012-a|>|x-a|,
两边平方,整理得:a<1006+x,从而a≤1006;
当x<0时,分两类研究:
(1)若x+2012<0,即x<-2012,则有-|x+2012+a|+2a>-|x+a|+2a,
即|x+a|>|x+2012+a|,两边平方,整理得:a<-1006-x,
∵-x>2012,∴a≤1006;
(2)若x+2012>0,则有|x+2012-a|-2a>-|x+a|+2a,即|x+a|+|x+2012-a|>4a,
当a≤0时,显然成立;
当a>0时,由于|x+a|+|x+2012-a|≥|-a-a+2012|=|2a-2012|,故有|2a-2012|>4a,
必有2012-2a>4a,解得a<
1006 |
3 |
综上,对x∈R都成立的实数a的取值范围是 a<
1006 |
3 |
即a的取值范围是(−∞,
1006 |
3 |
看了设函数f(x)的定义域为D,如...的网友还看了以下:
在下列各题的括号中,填上“偶”或“奇”字.(1)奇数+奇数=数(2)偶数+偶数=数(3)偶数+奇数 2020-04-22 …
1:如图,用与竖直方向成30度角的力F将重为10N的物体推靠在光滑的竖直墙上,求当物体沿着墙匀速滑 2020-04-27 …
难题急救若函f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,则f( 2020-04-27 …
数字0、2、4、6、8称为偶数数码,数字1、3、5、7、9称为奇数数码,在有些四位数的各位数字中, 2020-06-03 …
(1)若等差数列{an}的首项为a1=C11−2m5m-A2m−211−3m(m∈N*),公差是( 2020-06-11 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
我知道了答案不过是推出来的,算式怎么列啊,答案是146一个三位数,百位数数字是十位数数字的四分之一 2020-07-18 …
已知函数.其中.(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距 2020-07-21 …
求程序改错假定整数数列中的数不重复,并存放在数组中.下列给定程序中,函数FUN的功能是:删除数列中 2020-07-31 …
物理学中滑动摩擦力的大小计算公式为f=μN,式中μ叫动摩擦因素,N为正压力,现有一物体G受到向右水 2020-08-02 …