早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)和g(x)在闭区间[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.证明:至少存在一点c,使f'(c)+f(c)g'(c)=0.

题目详情
设函数f(x)和g(x)在闭区间[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.证明:至少存在一点c,使f'(c)+f(c)g'(c)=0.
▼优质解答
答案和解析
证明:
作辅助函数F(x)=f(x)e∧g(x)
则F'(x)=f'(x)e∧g(x)+f(x)g'(x)e∧g(x)
=[f'(x)+f(x)g'(x)]e∧g(x)
显然F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b)=0
由罗尔定理知,至少存在c∈(a,b),使F'(c)=0
即 [f'(c)+f(c)g'(c)]e∧g(c)=0
而 e∧g(c)≠0
故 f'(c)+f(c)g'(c)=0.