早教吧作业答案频道 -->数学-->
已知函数f(X)=ax-b/x-2lnx,f(1)=0(1)若函数f(x)在其定义域内为单调函数,求实数a的取值范围(2)图象在x=1处的切线的斜率为0,a(n+1)=f'(1/an+1)-nan+1若a1>=3,求证:an>=n+2用数学归纳法证明
题目详情
已知函数f(X)=ax-b/x-2lnx,f(1)=0 (1)若函数f(x)在其定义域内为单调函数,求实数a的取值范围
(2)图象在 x=1处的切线的斜率为0,a(n+1)=f '(1/an+1)-nan +1若a1>=3,求证:an>=n+2
用数学归纳法证明
(2)图象在 x=1处的切线的斜率为0,a(n+1)=f '(1/an+1)-nan +1若a1>=3,求证:an>=n+2
用数学归纳法证明
▼优质解答
答案和解析
1
f(1)=a-b=0,a=b
∴f(X)=ax-a/x-2lnx
f'(X)=a+a/x^2-2/x=(ax^2-2x+a)/x^2
根据定义域,x≠0,
∴x^2≠0,
使(-2)^2-4a^21或a0,为单调递增
f '(1/an+1)=[(1/an)·(an+1)]^2
=[1+1/an]^2
∴a(n+1)=f '(1/an+1)-nan +1
=[1+1/an]^2-nan +1>0
1/an^2+2/an-nan +2>0
f(1)=a-b=0,a=b
∴f(X)=ax-a/x-2lnx
f'(X)=a+a/x^2-2/x=(ax^2-2x+a)/x^2
根据定义域,x≠0,
∴x^2≠0,
使(-2)^2-4a^21或a0,为单调递增
f '(1/an+1)=[(1/an)·(an+1)]^2
=[1+1/an]^2
∴a(n+1)=f '(1/an+1)-nan +1
=[1+1/an]^2-nan +1>0
1/an^2+2/an-nan +2>0
看了 已知函数f(X)=ax-b/...的网友还看了以下:
关于连续函数证明:若闭区间[a,b]上的单调有界函数能取到f(a)和f(b)之间的一切值,则f(x 2020-05-13 …
设f(x0在[a,b]单调连续,(a,b)可导,a=f(a)<f(b)=b求证:存在ξi∈(a,b 2020-05-14 …
定义在R上的偶函数f(x)在(﹣∞,0]上单调递增,若f(a+1)<f(2a-1),求a的取值范围 2020-07-08 …
怎么由切线方程求反函数的切线方程若函数f(x)存在反函数,且函数f(x)图象在点(a,f(a))处 2020-07-22 …
(1/2)设函数f(x)=x3-3ax+b,若曲线y=f(x)在点(2,f(2))处与直线y=8相 2020-07-22 …
设函数f(x)=x3次方-3ax+b(a≠0)(1)若曲线y=f(x)在点(2,f(2))处与直线 2020-07-26 …
设函数f(x)=(mx+n)lnx.若曲线y=f(x)在点P(e,f(e))处的切线方程为y=2x 2020-07-30 …
求导问题若f(x)在点x=a的邻域内有定义,且除去点x=a外恒有[f(x)-f(a)]/(x-a) 2020-07-31 …
1.函数y=根号下(1+x)分之(1-x)的单调减区间是?2.若f(x)是定义在(0,正无穷大)上的 2020-11-01 …
设f(x)在[0,a]上连续,在(0,a)内可导,切f(0)=0,f'(x)单调增加(fx的倒数)证 2020-11-20 …