早教吧作业答案频道 -->语文-->
求证:当n>2时,x的n次方与y的n次方和等于z的n次方,x,y,z没有正整数解
题目详情
求证:当n>2时,x的n次方与y的n次方和等于z的n次方,x,y,z没有正整数解
▼优质解答
答案和解析
你太强了...费马大定理?!
17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665).
这道题是这样的:当n>2时,x^n+y^n=z^n没有正整数解.在数学上这称为“费马大定理”.为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的.由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜.
怀尔斯的证明恐怕很难找到,即使找到了,证明的长度和所需的专业知识也是一般人无法看懂的.n=3和4时,有初等证明,一些初等数论方面的书就有.
根本看不懂,一共100多页,估计能看懂一页的就可称为数学家了.
历史上有许多人,他们在主要从事的工作方面没有取得什么成果,而在平常茶余饭后的闲暇时间里却取得了了不起的成就.费马就是一个典型.在今天,人们提到皮埃尔·德·费马(1601~1665),主要不是因为他是一个政治家或法官,而是因为他是一个出色的业余数学家.费马在数学的许多领域都进行过研究并小有建树,但真正令他名满天下的是被后人称之为“费马大定理”的猜想.
费马大定理的表述很简单:对于正整数,不可能将一个高于2次的幂写成两个同次幂的和.换句话说就是,方程Xn+Yn=Zn,当n>2时,不存在正整数解.在一本书的页边,费马写到:我有一个对这个命题的十分优美的证明,这里空白太小,写不下.
从此包括大数学家欧拉、柯西在内的无数智者都曾为此殚精竭智,虽然每次都能向前迈进一小步,但都未能最终证明费马大定理.300多年来,很多人声称找到了解决这个难题的办法,然而每一次均为人所推翻.从费马大定理本身来说,证明不证明它对数学的发展没有多大意义.但一方面,这是对智慧的挑战;另一方面,数学家们从证明费马大定理的过程中得到了许多意外的收获,一些新的数学分支和方法正是在对它的研究中产生的.因而,费马大定理的证明一直受到人们
的关注.
关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一.按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命.在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文.碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间.之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年.
美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明.他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金.
怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数.因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人倾向于认为当年的费马其实毫无发现,或者只是想到了一个错误的方法.
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的.关于此,我确信已发现 一种美妙的证法 ,可惜这里空白的地方太小,写不下.”毕竟费马没有写下证明,而他的其他猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣.数学家们的有关工作丰富了数论的内容,推动了数论的发展.
对得多不同的 n,费马定理早被证明了.但数学家对一般情况在首二百年内仍一筹莫展.
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人.
1983年, Gerd Faltings 证明了 Mordell conjecture 从而得出当 n > 2 时(n为整数),不存在互质的 a,b,c 使得 an + bn = cn.
1986年,Gerhard Frey 提出了“epsilon 猜想”:若存在 a, b, c 使得an + bn = cn,即费马大定理是错的,则椭圆曲线
y2 = x(x-an)(x + bn)
会是谷山志村猜想的一个反例.Frey 的猜想随即被 Kenneth Ribet 证实.此猜想显示了费马大定理与椭圆曲线及 modular forms 的密切关系.
1995年,怀尔斯和泰勒在一特例范围内证明了谷山志村猜想,Frey 的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理.
怀尔斯证明费马大定理的过程亦甚具戏剧性.他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条.但在审批证明的过程中,专家发现了一个极严重的错误.怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功.他们的证明刊在1995年的Annals of Mathematics之上.
17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665).
这道题是这样的:当n>2时,x^n+y^n=z^n没有正整数解.在数学上这称为“费马大定理”.为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的.由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜.
怀尔斯的证明恐怕很难找到,即使找到了,证明的长度和所需的专业知识也是一般人无法看懂的.n=3和4时,有初等证明,一些初等数论方面的书就有.
根本看不懂,一共100多页,估计能看懂一页的就可称为数学家了.
历史上有许多人,他们在主要从事的工作方面没有取得什么成果,而在平常茶余饭后的闲暇时间里却取得了了不起的成就.费马就是一个典型.在今天,人们提到皮埃尔·德·费马(1601~1665),主要不是因为他是一个政治家或法官,而是因为他是一个出色的业余数学家.费马在数学的许多领域都进行过研究并小有建树,但真正令他名满天下的是被后人称之为“费马大定理”的猜想.
费马大定理的表述很简单:对于正整数,不可能将一个高于2次的幂写成两个同次幂的和.换句话说就是,方程Xn+Yn=Zn,当n>2时,不存在正整数解.在一本书的页边,费马写到:我有一个对这个命题的十分优美的证明,这里空白太小,写不下.
从此包括大数学家欧拉、柯西在内的无数智者都曾为此殚精竭智,虽然每次都能向前迈进一小步,但都未能最终证明费马大定理.300多年来,很多人声称找到了解决这个难题的办法,然而每一次均为人所推翻.从费马大定理本身来说,证明不证明它对数学的发展没有多大意义.但一方面,这是对智慧的挑战;另一方面,数学家们从证明费马大定理的过程中得到了许多意外的收获,一些新的数学分支和方法正是在对它的研究中产生的.因而,费马大定理的证明一直受到人们
的关注.
关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一.按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命.在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文.碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间.之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年.
美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明.他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金.
怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数.因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人倾向于认为当年的费马其实毫无发现,或者只是想到了一个错误的方法.
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的.关于此,我确信已发现 一种美妙的证法 ,可惜这里空白的地方太小,写不下.”毕竟费马没有写下证明,而他的其他猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣.数学家们的有关工作丰富了数论的内容,推动了数论的发展.
对得多不同的 n,费马定理早被证明了.但数学家对一般情况在首二百年内仍一筹莫展.
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人.
1983年, Gerd Faltings 证明了 Mordell conjecture 从而得出当 n > 2 时(n为整数),不存在互质的 a,b,c 使得 an + bn = cn.
1986年,Gerhard Frey 提出了“epsilon 猜想”:若存在 a, b, c 使得an + bn = cn,即费马大定理是错的,则椭圆曲线
y2 = x(x-an)(x + bn)
会是谷山志村猜想的一个反例.Frey 的猜想随即被 Kenneth Ribet 证实.此猜想显示了费马大定理与椭圆曲线及 modular forms 的密切关系.
1995年,怀尔斯和泰勒在一特例范围内证明了谷山志村猜想,Frey 的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理.
怀尔斯证明费马大定理的过程亦甚具戏剧性.他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条.但在审批证明的过程中,专家发现了一个极严重的错误.怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功.他们的证明刊在1995年的Annals of Mathematics之上.
看了 求证:当n>2时,x的n次方...的网友还看了以下:
三重积分问题为什么对于z=x^2+y^2与平面z=0z=1围成区域计算积分z范围是x^2+y^2到 2020-05-13 …
设z=f(x),r=√(x^2+y^2),其中f(r)为可微函数证明:z关于x的二次偏导加z关于y 2020-06-06 …
1设x、y、z属于R且(x-1)^2/16+(y+2)^2/5+(z-3)^2/4=1,则x+y+ 2020-06-12 …
好像挺难.设M={a/a=x2-y2,x,y属于Z},则下面的几个命题1.2k-1属于M(k属于Z 2020-07-11 …
计算积分∮e^z/(z^2+1)的值,其中C是正向圆周|z|=2.解是z=i和z=-i做小圆周,则 2020-07-29 …
(1)已知i为虚数单位,计算(1+i/1-i)的2013次方(2)已知z是复数,z+3i于z/3- 2020-07-30 …
x、y、z属于正实数,且xyz=1,求1/(x^2(y+1)+1)+1/(y^2(z+1)+1)+1 2020-10-31 …
(a+b+c)/3大于等于3*√abc设a=x^3,b=y^3,c=z^3x,y,z是非负数时x^3 2020-11-01 …
浙江大学《概率论与数理统计》第四版教材81页,关于z=min{x,y}的分布函数的求解,我有一点不明 2020-11-01 …
Foreachofthefollowing,giveabijectionffromAtoB.Yous 2020-11-26 …