早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条

题目详情
在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是
3
,3)或(
1
3
3
3
)或(
2
3
2
3
3
)或(2,2
3
3
,3)或(
1
3
3
3
)或(
2
3
2
3
3
)或(2,2
3
▼优质解答
答案和解析
①如图1,当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;
∵∠AOH=60°,
∴直线OA:y=
3
x,
联立抛物线的解析式得:
y=
3
x
y=x2

解得:
x=0
y=0
x=
作业帮用户 2016-11-22
问题解析
由于两三角形的对应边不能确定,故应分四种情况进行讨论:
①∠POQ=∠OAH=30°,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标,由三角形的面积公式即可得出结论;
②∠POQ=∠AOH=60°,此时∠POH=30°,即直线OP:y=
3
3
x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标,由三角形的面积公式即可得出结论;
③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论;
④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题考查的是二次函数综合题,涉及到全等三角形的判定和性质以及函数图象交点坐标的求法,解答此题时一定要注意进行分类讨论.
我是二维码 扫描下载二维码