早教吧作业答案频道 -->数学-->
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角
题目详情
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=
,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=
2 |

▼优质解答
答案和解析
(1)如图1中,∵∠A=40°,∠B=60°,
∴∠ACB=80°,
∴△ABC不是等腰三角形,
∵CD平分∠ACB,
∴∠ACD=∠BCD=
∠ACB=40°,
∴∠ACD=∠A=40°,
∴△ACD为等腰三角形,
∵∠DCB=∠A=40°,∠CBD=∠ABC,
∴△BCD∽△BAC,
∴CD是△ABC的完美分割线.
(2)①当AD=CD时,如图2,∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°.
②当AD=AC时,如图3中,∠ACD=∠ADC=
=66°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°.
③当AC=CD时,如图4中,∠ADC=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍弃.
∴∠ACB=96°或114°.
(3)由已知AC=AD=2,
∵△BCD∽△BAC,
∴
=
,设BD=x,
∴(
)2=x(x+2),
∵x>0,
∴x=
-1,
∵△BCD∽△BAC,
∴
=
=
,
∴CD=
×2=
-

∴∠ACB=80°,
∴△ABC不是等腰三角形,
∵CD平分∠ACB,
∴∠ACD=∠BCD=
1 |
2 |
∴∠ACD=∠A=40°,
∴△ACD为等腰三角形,
∵∠DCB=∠A=40°,∠CBD=∠ABC,
∴△BCD∽△BAC,
∴CD是△ABC的完美分割线.
(2)①当AD=CD时,如图2,∠ACD=∠A=48°,
∵△BDC∽△BCA,

∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°.
②当AD=AC时,如图3中,∠ACD=∠ADC=
180°-48° |
2 |
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°.
③当AC=CD时,如图4中,∠ADC=∠A=48°,
∵△BDC∽△BCA,

∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍弃.
∴∠ACB=96°或114°.
(3)由已知AC=AD=2,
∵△BCD∽△BAC,
∴
BC |
BA |
BD |
BC |
∴(
2 |
∵x>0,

∴x=
3 |
∵△BCD∽△BAC,
∴
CD |
AC |
BD |
BC |
| ||
|
∴CD=
| ||
|
6 |
|
看了 从三角形(不是等腰三角形)一...的网友还看了以下:
有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依 2020-04-11 …
等腰直角三角形绕直角顶点顺时针旋转90°后得到的图形是()A.等边三角形B.等腰三角形C.等腰直角 2020-04-11 …
】有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰有一块直角三角形的 2020-05-17 …
以OA为斜边作等腰直角三角形OAB,再以OB为斜边在△OAB外侧作等腰直角三角形OBC,如此继续, 2020-07-24 …
勾股定理关于角的特殊定理勾股定理关于:等要三角形直角三角形等腰直角三角形顶角为120度的等腰三角形 2020-08-02 …
有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依 2020-11-07 …
麻烦帮算下等腰体型和等腰三角形的的边长?高中的时候这些小菜,N多年后不用忘得一干二净。等腰直角三角形 2020-11-17 …
如图是一块直角三角形形状的绿地,量得两直角边长分别为6,8.现在要将绿地扩充成等腰三角形,且扩充的图 2020-11-21 …
过春节时,丽丽的奶奶剪了好多漂亮的窗花,她用一张正方形纸沿对角线对折后,得到一个等腰直角三角形,再沿 2020-12-08 …
有一直角三角形绿地,量得两直角边长为3米和4米,现在要将绿地扩充成等腰三角形形状,且扩充部分有一条直 2021-01-13 …