早教吧作业答案频道 -->数学-->
一个高阶导数的问题证明:函数f(x)是n次多项式,a是f(x)=0的k重根的充要条件是:f(a)=f‘(a)=f‘’(a)=······=f(a)的(k-1)阶倒数=0(k
题目详情
一个高阶导数的问题
证明:函数f(x)是n次多项式,a是f(x)=0的k重根的充要条件是:f(a)=f ‘(a)=f ‘ ’(a)=······=f(a)的(k-1)阶倒数=0 (k
证明:函数f(x)是n次多项式,a是f(x)=0的k重根的充要条件是:f(a)=f ‘(a)=f ‘ ’(a)=······=f(a)的(k-1)阶倒数=0 (k
▼优质解答
答案和解析
充分性f(a)=0 则f(x)可以表示为f(x)=g1(x)*(x-a) ,g1(x)是n-1次多项式求导f '(x)=g1'(x)(x-a)+g1(x) 代入x=af '(a)=g1(a)=0 则g1(x)可以表示为g1(x)=g2(x)*(x-a) g2(x)是n-2次多项式所以f(x)=g2(x)*(x-a)^2以此类推f(a)的(k-1)阶倒数=0 可得f(x)=gk(x)*(x-a)^k gk(x)是n-k次多项式f(a)的k阶导数不为0.可知gk(a)不等于0所以x=a是f(x)的k重根必要性x=a是f(x)的k重根则f(x)必然可以写成f(x)=g(x)*(x-a)^k 形式,其中g(x)是n-k次多项式 且g(a)不等于0求导f '(x)=g'(x)(x-a)^k+g(x)*k(x-a)^(k-1)f"(x)=g"(x)(x-a)^k+2g'(x)*k(x-a)^(k-1)+g(x)*k(k-1)(x-a)^k-2...f(x)的(k-1)阶导=g的k-1阶导*(x-a)^k+k*g的k-2阶导*k(x-a)^(k-1)+k(k-1)*g的k-3阶导*k(k-1)(x-a)^k-2+.+g(x)*k*(k-1)*(k-2)*...*1*(x-a)把x=a代入,可知f(a)=f ‘(a)=f ‘ ’(a)=······=f(a)的(k-1)阶倒数=0(因为每一项都含有(x-a))而f(x)的k阶导数最后一项会出现 g(x)*k*(k-1)*(k-2)*...*1 又g(a)不等于0所以f(a)k阶导数不为0原命题得证
看了 一个高阶导数的问题证明:函数...的网友还看了以下:
问一行列式题行列式题 |x 1 1 1| |x+3 1 1 1||1-x x-1 1 1|=| 0 2020-05-14 …
一道数学问题方程(x+y-1)*[根号(x-1)]=0表示什么曲线?解:由方程(x+y-1)*[根 2020-05-14 …
设随机变量当0≤x≤1时X~f(x)=x;当1<x≤2时,X-f(x)=A-x;其它情况下,X-f 2020-05-15 …
解方程:5x平方-根号5-6=0① 5x的平方-根号下的5x-6=0 (是根号5 乘x 不是根号下 2020-05-16 …
关于泰勒展式的一个问题.f(x)在[0,1]上二阶可导,f(0)=f(1)=0,min[f(x)] 2020-05-17 …
关于泰勒展式的一个问题.f(x)在[0,1]上二阶可导,f(0)=f(1)=0,min[f(x)] 2020-05-17 …
关于概率的问题设随机变量X与Y互相独立,其概率密度分别为fX(x),当0≦x≦1时等于1,其他情况 2020-06-12 …
一个简单的数学问题关于化解的x^3+2x^2-x-2>0,帮我化简一下,谢谢大家,要过程一步一步的 2020-07-13 …
概率密度与分布函数的计算问题p(-3<x<1/2)=∫(1/2,-3)f(x)dx=∫(-1,-3 2020-07-22 …
二重积分的问题已知二维随机变量(X,Y)的概率密度为f(x,y)={2,0≤x≤1,0≤y≤x,0 2020-08-02 …