早教吧作业答案频道 -->其他-->
若关于X的二次方程x2+(m-1)x+1=0在区间0,2上有零点关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围有两不同解的情况:令:f(x)=x²+(m-1)x+1(1)f(x)=0在区间[0,2]上有一解
题目详情
若关于X的二次方程x2+(m-1)x+1=0在区间【0,2】上有零点
关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围有两不同解的情况:
令:f(x) = x²+(m-1)x+1
(1)f(x)=0在区间[0,2]上有一解(非重根)
--->f(0)•f(2)≤0,即:1•(2m+3)≤0 --->m≤-3/2
(2)f(x)=0在区间[0,2]上有二解(含重根)
--->(i) Δ=(m-1)²-4≥0-------------->m≥3或m≤-1
(ii)对称轴x=(1-m)/2在[0,2]上--->-3≤m≤1
(iii)f(0)≥0且f(2)≥0---------->m≥-3/2
求交集--->-3/2≤m≤-1
综合(1)(2)--->m≤-1,
所以m的取值范围为{m|m≤-1}为什么没有m>=3啊,为什么取交集不取并集?
关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围有两不同解的情况:
令:f(x) = x²+(m-1)x+1
(1)f(x)=0在区间[0,2]上有一解(非重根)
--->f(0)•f(2)≤0,即:1•(2m+3)≤0 --->m≤-3/2
(2)f(x)=0在区间[0,2]上有二解(含重根)
--->(i) Δ=(m-1)²-4≥0-------------->m≥3或m≤-1
(ii)对称轴x=(1-m)/2在[0,2]上--->-3≤m≤1
(iii)f(0)≥0且f(2)≥0---------->m≥-3/2
求交集--->-3/2≤m≤-1
综合(1)(2)--->m≤-1,
所以m的取值范围为{m|m≤-1}为什么没有m>=3啊,为什么取交集不取并集?
▼优质解答
答案和解析
以上你的解题过程完全正确,取交集是让m的范围同时满足三个条件,以保证f(x)=0在区间[0,2]上有二解(含重根).
看了 若关于X的二次方程x2+(m...的网友还看了以下:
解cosA-1/(2COSA),cosA属于[1/2,1]的取值范围令t=cosA,则f(t)=t 2020-05-17 …
例题y=(3x-1)/(x+2)的图像关于对称.用分离常数的方法y=3-7/(x+2)然后就是令x 2020-05-20 …
如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0, 2020-06-10 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
y=x+√(1-x),求极值,有如此的解答:对函数求导得:y'=1-1/2√(1-x),令y'=0 2020-07-31 …
已知函数f(x)=x^2-2mx+m^2-m,g(x)=x^2-(4m-1)x+4m^2+mh(x 2020-08-01 …
当X趋近X.时limf(x)=A存在的充分必要条件是f(x)=A+α,其中当X趋近X.limα=0, 2020-10-31 …
xy为任意实数,f(x+y)=f(x)+2y(x+y)f(1)=1求f(x)1、令x+y=1,那么y 2020-10-31 …
已知函数fx是定义在实数集R上的不恒为零的偶函数,对任意实数x有xf(x+1)=(1+x)f(x), 2020-11-18 …
已知函数f(x)=e^x-2x+a有零点,则实数a的取值范围为?令e^x-2x+a=0则a=2x-e 2020-12-26 …