早教吧作业答案频道 -->数学-->
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)=F'(-1)=lim(t→0)[f[(-1-t)^2-1]+f[1-(-1-t)^2]-2f(0)]/(-t)=lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/(-t)=-lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/t(令x=t)=-lim(x→0)[
题目详情
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)=F'(-1)
=lim(t→0)[f[(-1-t)^2-1]+f[1-(-1-t)^2]-2f(0)]/(-t)=lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/(-t)
=-lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/t (令x=t)
=-lim(x→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/x
=-F(1),关于这里不太懂
=lim(t→0)[f[(-1-t)^2-1]+f[1-(-1-t)^2]-2f(0)]/(-t)=lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/(-t)
=-lim(t→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/t (令x=t)
=-lim(x→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/x
=-F(1),关于这里不太懂
▼优质解答
答案和解析
根据定义,F'(1)
= lim(dx→0)[ f[(1+dx)^2-1]+f[1-(1+dx)^2]-2f(0)]/dx
(1+dx)^2 = (-1-dx)^2,所以
= lim(dx→0)[ f[(-1-dx)^2-1]+f[1-(-1-dx)^2]-2f(0)]/dx
令t=-dx,上式可转化为
= lim(-t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/(-t)
= - lim(t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/t
根据定义,= - F'(-1)
楼主上面那个解法的最后一步,其实就是倒数的定义.
因为F'(1)根据倒数的定义
= lim(x→0) [F(1+x) - F(1)]/x
= lim(x→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/x
= lim(dx→0)[ f[(1+dx)^2-1]+f[1-(1+dx)^2]-2f(0)]/dx
(1+dx)^2 = (-1-dx)^2,所以
= lim(dx→0)[ f[(-1-dx)^2-1]+f[1-(-1-dx)^2]-2f(0)]/dx
令t=-dx,上式可转化为
= lim(-t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/(-t)
= - lim(t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/t
根据定义,= - F'(-1)
楼主上面那个解法的最后一步,其实就是倒数的定义.
因为F'(1)根据倒数的定义
= lim(x→0) [F(1+x) - F(1)]/x
= lim(x→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/x
看了 设f(x)在(-∞,+∞)内...的网友还看了以下:
已知f(x)是定义在R上的函数,且f(x)+f(-1﹚=0,当x>0时,f(x)=2x-x2 求( 2020-05-17 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
f(x)的定义域为R+,对任意x,y∈R+恒有f(xy)=f(x)+f(y)设f^-1(x)是f( 2020-06-05 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)设 2020-07-09 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
利用Roll定理构造函数设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1 2020-11-02 …
1.在反应凸透镜成像的原理的公式1/F=1/f¹+1/f²中,f¹≠f²,则F=?2.在方程1+(x 2020-11-06 …
f(x)=x²+2x+1,f(-1)=0,对任意实数xf(x)≥0,当x属于[-2,2]时,g(x) 2020-11-28 …
已知函数f(x)的定义域是(0,正无穷),且对一切x>0,y>0都有f(x/y)=f(x)-f(y) 2021-01-23 …