早教吧作业答案频道 -->数学-->
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.(Ⅰ)求证:BC⊥平面PAC;(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大小;(Ⅲ)
题目详情
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.

(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大小;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大小;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
▼优质解答
答案和解析
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又∵∠BCA=90°,∴AC⊥BC.
∵PA∩AC=A,∴BC⊥平面PAC.…(4分)
(Ⅱ)∵D为PB的中点,DE∥BC,
∴DE=
BC,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,…(6分)
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴AD=
AB,
∴在Rt△ABC中,∠ABC=60°,∴BC=
AB.
∴在Rt△ADE中,sin∠DAE=
=
=
,
∴AD与平面PAC所成的角的大小arcsin
.…(8分)
(Ⅲ)∵DE∥BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE⊂平面PAC,PE⊂平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角A-DE-P的平面角,…(10分)
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,
使得AE⊥PC,这时∠AEP=90°,
故存在点E使得二面角A-DE-P是直二面角.…(12分)
又∵∠BCA=90°,∴AC⊥BC.
∵PA∩AC=A,∴BC⊥平面PAC.…(4分)
(Ⅱ)∵D为PB的中点,DE∥BC,
∴DE=
1 |
2 |
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,…(6分)
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴AD=
1 | ||
|
∴在Rt△ABC中,∠ABC=60°,∴BC=
1 |
2 |
∴在Rt△ADE中,sin∠DAE=
DE |
AD |
BC |
2AD |
| ||
4 |
∴AD与平面PAC所成的角的大小arcsin
| ||
4 |
(Ⅲ)∵DE∥BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE⊂平面PAC,PE⊂平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角A-DE-P的平面角,…(10分)
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,
使得AE⊥PC,这时∠AEP=90°,
故存在点E使得二面角A-DE-P是直二面角.…(12分)
看了 如图,在三棱锥P-ABC中,...的网友还看了以下:
已知a>0,b>0,ab=a+b+3,求ab与a+b的取值范围 2020-04-05 …
已知椭圆的左焦点为F1(-c,0),A(-a,0)B(b,0)是两个顶点,如果F1到直线AB的距离 2020-05-13 …
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
a>0,b>0,ab=a+b+3,求ab最小值 2020-05-15 …
已知a>0,b>0.ab=a+b+3,求ab的最小值. 2020-05-15 …
已知a>0,b>0,c>0,d>0且a+b+c+d=4求证a*abc+b*bda+c*cda+d* 2020-07-09 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
1.四边形ABCD和四边形A'B'C'D'中,AB:A'B'=BC:B'C'=CB:C'D'=DA 2020-07-25 …
由心脏线围成的均匀区域的重心设平面区域D由r=a(1+cosθ)所围(a>0),D的面密度均匀,求 2020-07-29 …
多元一次方程求解a=0.1072(a+b+c+d+e)b=0.041(a+b+c+d+e)c=0.2 2020-12-14 …