早教吧作业答案频道 -->数学-->
由心脏线围成的均匀区域的重心设平面区域D由r=a(1+cosθ)所围(a>0),D的面密度均匀,求D的重心.我设面密度为1,先求质量m=∫∫dxdy=∫[0到2∏]dθ∫[0到a(1+cosθ)]rdr=3/2*∏a^2,再求∫∫xdxdy=∫[0到2∏]d
题目详情
由心脏线围成的均匀区域的重心
设平面区域D由r=a(1+cosθ)所围(a>0),D的面密度均匀,求D的重心.
我设面密度为1,先求质量m=∫∫dxdy=∫[0到2∏]dθ∫[0到a(1+cosθ)]rdr=3/2*∏a^2,再求∫∫xdxdy=∫[0到2∏]dθ∫[0到a(1+cosθ)]r^2*cosθdr=3/2*∏a^3,相除得横坐标为a.
但答案是5/6*a,请问我哪里做错了?麻烦你指出来,如果是积分积错的话请把正确的步骤打出来(步骤不要跳太快,我要看看我哪里错了).
百度显示得不好,那个“∏”是圆周率π
设平面区域D由r=a(1+cosθ)所围(a>0),D的面密度均匀,求D的重心.
我设面密度为1,先求质量m=∫∫dxdy=∫[0到2∏]dθ∫[0到a(1+cosθ)]rdr=3/2*∏a^2,再求∫∫xdxdy=∫[0到2∏]dθ∫[0到a(1+cosθ)]r^2*cosθdr=3/2*∏a^3,相除得横坐标为a.
但答案是5/6*a,请问我哪里做错了?麻烦你指出来,如果是积分积错的话请把正确的步骤打出来(步骤不要跳太快,我要看看我哪里错了).
百度显示得不好,那个“∏”是圆周率π
▼优质解答
答案和解析
面积=2*1/2∫r^2dθ 积分区间(0,π)
∫∫xdxdy
=∫r*cosθ*r^2dθ 积分区间(0,2π)
=∫[a(1+cosθ)]^3*cosθdθ
=a^3*∫(cosθ+3(cosθ)^2+3(cosθ)^3+(cosθ)^4dθ
=a^3*(sinθ+3/2(θ+1/2sinθ)+3sinθ-(sinθ)^3+∫(cosθ)^4dθ
∫(cosθ)^4dθ=3θ/8+sin4θ/32+sin2θ/4
代入区间(0,2π)
只有3/2θ,3θ/8 不为0
所以原式=15πa^3/4
相除=5/6*a
答案正确!1
∫∫xdxdy
=∫r*cosθ*r^2dθ 积分区间(0,2π)
=∫[a(1+cosθ)]^3*cosθdθ
=a^3*∫(cosθ+3(cosθ)^2+3(cosθ)^3+(cosθ)^4dθ
=a^3*(sinθ+3/2(θ+1/2sinθ)+3sinθ-(sinθ)^3+∫(cosθ)^4dθ
∫(cosθ)^4dθ=3θ/8+sin4θ/32+sin2θ/4
代入区间(0,2π)
只有3/2θ,3θ/8 不为0
所以原式=15πa^3/4
相除=5/6*a
答案正确!1
看了 由心脏线围成的均匀区域的重心...的网友还看了以下:
请问吖``选哪个(A,B,C,D)?1.在下列各式中,运算的结果为1-2xy②+x②y④的是(). 2020-05-13 …
证明(x的m次方-1,x的n次方-1)=x的d次方-1,其中d为m、n的最大公约数 2020-05-14 …
关于x的不等式组x>m-1,x>m=2的解集是x>-1,则m=(421:0:37)关于x的不等式组 2020-05-21 …
关于x的不等式组x>m-1,x>m-2的解集是x>-1,则m=?求(520:37:19) 关于x的 2020-05-21 …
幂函数g(x)=(m^2-m-1)x^m的图像关于y轴对称,且函数f(x)=g(x)-2ax+1在 2020-06-02 …
定义:函数f(x)为定义域D上单调函数,且存在区间[a,b]D(其中a<b),使得当x∈[a,b] 2020-06-08 …
用十字相乘法把下列格式分解因式,急用!1、x²(2a+b)x+2ab2、x²+mx-2m²3、x² 2020-06-12 …
若集合M={x丨-3≤x≤4},集合P={x丨2m-1≤x≤m+1}.(1)证明:M与P不可能相等 2020-06-12 …
设集合A={(x,y)│(y-3)/(x+2)=m+1},B={(x,y)│(m^2-1)x+(m 2020-07-30 …
已知关于x的方程(m^2-1)x^2-(m+1)x+m=0(1)m为何值时,此方程是一元—次已知关于 2020-11-12 …