早教吧作业答案频道 -->数学-->
已知ab为过抛物线yy=2px(p>0)焦点f的弦,点c在抛物线的准线上,且bc∥x轴,求证;ac经过原点
题目详情
已知ab为过抛物线yy=2px(p>0)焦点f的弦,点c在抛物线的准线上,且bc∥x轴,求证;ac经过原点
▼优质解答
答案和解析
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC‖x轴.证明直线AC经过原点O.
分析:我们把线段FA、FB、OA、OC看做平面向量,由 与 共线推出 与 共线,即可说明直线AC经过原点O.
设A(x1,y1),B(x2,y2),则y12=2px1,记为①
y22=2px2,记为②
焦点F=( ,0),准线方程x=- ,因为点C在抛物线的准线上,且BC‖x轴,则有C=(- ,y2).
=(x1- ,y1), =(x2- ,y2), =(x1,y1), =(- ,y2),因为 与 共线,
所以(x1- )y2-(x2- )y1=0.③
联立①、②、③式可解得:y1y2=-p2.④
而x1y2-(- )y1= y2+ y1,⑤
将④式代入⑤式有x1y2-(- )y1=0,
所以 与 是共线向量,A、O、C三点共线即直线AC经过原点O.
分析:我们把线段FA、FB、OA、OC看做平面向量,由 与 共线推出 与 共线,即可说明直线AC经过原点O.
设A(x1,y1),B(x2,y2),则y12=2px1,记为①
y22=2px2,记为②
焦点F=( ,0),准线方程x=- ,因为点C在抛物线的准线上,且BC‖x轴,则有C=(- ,y2).
=(x1- ,y1), =(x2- ,y2), =(x1,y1), =(- ,y2),因为 与 共线,
所以(x1- )y2-(x2- )y1=0.③
联立①、②、③式可解得:y1y2=-p2.④
而x1y2-(- )y1= y2+ y1,⑤
将④式代入⑤式有x1y2-(- )y1=0,
所以 与 是共线向量,A、O、C三点共线即直线AC经过原点O.
看了 已知ab为过抛物线yy=2p...的网友还看了以下:
(2012•温州三模)如图,抛物线F:y=x2-2x+3的顶点为P,与y轴交于点A,过点P作PB⊥ 2020-05-14 …
抛物线y=-x2+2x+3与x轴相交于a,b两点,点a在b的左边,与y轴相交于点c,抛物线顶点为d 2020-05-16 …
如图,已知抛物线y=-x2+2x+3与y轴交于点C,与x轴交于A,B两点,且A在B的左边,抛物线的 2020-06-14 …
已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M 2020-06-15 …
(2013•海口二模)抛物线y2=2px(p>0)的焦点为F,过焦点F倾斜角为30°的直线交抛物线 2020-06-27 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上 2020-07-29 …
已知抛物线的焦点为F,A、B是抛物线C上异于坐标原点O的不同两点,抛物线C在点A、B处的切线分别为 2020-08-01 …
已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于 2020-10-31 …
如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1 2021-01-11 …