早教吧作业答案频道 -->数学-->
已知圆O:x2+y2=1,点P在直线L:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点(1)求切线长PA的最小值,并求此时点P的坐标.(2)点M为直线y=x与直线L的交点,若在平面内存在定点N(不同于点M),满足
题目详情
已知圆O:x2+y2=1,点P在直线L:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点
(1)求切线长PA的最小值,并求此时点P的坐标.(2)点M为直线y=x与直线L的交点,若在平面内存在定点N(不同于点M),满足:对于圆O上任意一点Q,都有QN/QM为一常数,求所有满足条件的点N的坐标(3)求向量PA*向量PB的最小值
(1)求切线长PA的最小值,并求此时点P的坐标.(2)点M为直线y=x与直线L的交点,若在平面内存在定点N(不同于点M),满足:对于圆O上任意一点Q,都有QN/QM为一常数,求所有满足条件的点N的坐标(3)求向量PA*向量PB的最小值
▼优质解答
答案和解析
:(1)由勾股定理得:|PO|2=R2+|PA|2,半径R=1,所以要求|PA|最小,就是求|PO|最短,
而|PO|最短时,OP垂直于直线2x+y-3=0,所以最短|OP|=|0+0-3|4+1=35,
所以|PA|2=|PO|2-R2=45
即|PA|最小时,|PA|=255
直线2x+y-3=0的斜率是k=-2,则PO的斜率是k'=12,所以OP方程是y=x2
将方程y=x2与直线2x+y-3=0联立,解得:x=65,故有y=35,即点P坐标是(65,35);
(2)由直线y=x与直线l:2x+y-3=0联立,可得交点坐标M(1,1),设Q(m,n),N(x,y)
则QNQM=(x-m)2+(y-n)2(m-1)2+(n-1)2=λ(λ≠1)
∴m(2λ-2x)+n(2λ-2y)+x2+y2-3λ+1=0
∵对于圆 O上任意一点Q,都有QNQM为一常数,
∴2λ-2x=02λ-2y=0x2+y2-3λ+1=0,解得x=y=λ=12,
∴N(12,12)
(3)由题意,四点P,A,O,B共圆,当且仅当圆与直线相切时,|PA|最小,∠APB最大,PA��PB取得最小值
由(1)知P坐标是(65,35);
设A(a,b),则过A的切线方程为:ax+by=1,将(65,35)代入可得65a+35b=1,
∵a2+b2=1
∴a=10+1015,b=5-21015,或a=10-1015,b=5+21015
∴PA��PB=(10+1015-65,5-21015-35)��(10-1015-65,5+21015-35)=215
而|PO|最短时,OP垂直于直线2x+y-3=0,所以最短|OP|=|0+0-3|4+1=35,
所以|PA|2=|PO|2-R2=45
即|PA|最小时,|PA|=255
直线2x+y-3=0的斜率是k=-2,则PO的斜率是k'=12,所以OP方程是y=x2
将方程y=x2与直线2x+y-3=0联立,解得:x=65,故有y=35,即点P坐标是(65,35);
(2)由直线y=x与直线l:2x+y-3=0联立,可得交点坐标M(1,1),设Q(m,n),N(x,y)
则QNQM=(x-m)2+(y-n)2(m-1)2+(n-1)2=λ(λ≠1)
∴m(2λ-2x)+n(2λ-2y)+x2+y2-3λ+1=0
∵对于圆 O上任意一点Q,都有QNQM为一常数,
∴2λ-2x=02λ-2y=0x2+y2-3λ+1=0,解得x=y=λ=12,
∴N(12,12)
(3)由题意,四点P,A,O,B共圆,当且仅当圆与直线相切时,|PA|最小,∠APB最大,PA��PB取得最小值
由(1)知P坐标是(65,35);
设A(a,b),则过A的切线方程为:ax+by=1,将(65,35)代入可得65a+35b=1,
∵a2+b2=1
∴a=10+1015,b=5-21015,或a=10-1015,b=5+21015
∴PA��PB=(10+1015-65,5-21015-35)��(10-1015-65,5+21015-35)=215
看了 已知圆O:x2+y2=1,点...的网友还看了以下:
过点M(2,-2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB中点的纵 2020-05-13 …
由曲线y=x2,y=x3围成的封闭面积为?若点p是曲线y=x2-lnx上任意一点,点p到直线y=x 2020-05-14 …
曲线C由X2/9+y2/5=1(y≥0)和x2/9-y2/5=1(y≥0)两部分组成,曲线C由X2 2020-05-15 …
曲线C由X2/9+y2/5=1(y≥0)和x2/9-y2/5=1(y≥0)两部分组成,若过点(0, 2020-05-15 …
如图,已知点F(0,1),直线L:y=-2,及圆C:x2+(y-3)2=1. (1)若动点M到点F 2020-06-27 …
抛物线y=x-(2m-1)x-6m与x轴交于两点(x1,0)和(x2,0)若,x1x2=x1+x2 2020-07-17 …
已知点A(-2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物 2020-07-21 …
已知抛物线y已知抛物线y=x2+bx+c于x轴只有一个交点,且交点为A(2,0)已知抛物线y=x2 2020-07-29 …
已知P1(x1,y1),p2(x2,y2),P3(x3,y3)三点共线,若x1,x2,x3成等差数 2020-08-02 …
已知抛物线y=x2+3(m+1)x+m+4与x轴交与a.b两点,与y轴交与点c,若a点在X轴负半轴上 2021-01-11 …