早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α

题目详情
如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.
(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若cosα=
4
5
,OQ=15,求AB的长.
▼优质解答
答案和解析
(1)证明:连接OP,与AB交于点C.
∵PA=PB,OA=OB,OP=OP,
∴△OAP≌△OBP(SSS),
∴∠OBP=∠OAP,
∵PA是⊙O的切线,A是切点,
∴∠OAP=90°,
∴∠OBP=90°,即PB是⊙O的切线;
(2)证明:∵∠Q=∠Q,∠OAQ=∠QBP=90°,
∴△QAO∽△QBP,
AQ
BQ
=
OQ
PQ
,即AQ•PQ=OQ•BQ;
(3)连OP并交AB于点C,
在Rt△OAQ中,∵OQ=15,cosα=
4
5

∴OA=12,AQ=9,
∴QB=27;
AQ
BQ
=
OQ
PQ

∴PQ=45,即PA=36,
∴OP=12
10

∵∠APO=∠APO,∠PAO=∠PCA=90°
∴△PAC∽△POA,
PA
PO
=
AC
AO

∴PA•OA=OP•AC,即36×12=12
10
•AC,
∴AC=
18
5
10
,故AB=
36
5
10