早教吧作业答案频道 -->其他-->
(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD的位置关系,并说明理由.(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=.(直接给出答案)(3)如图(3)
题目详情
(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB和CD的位置关系,并说明理由.
(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)
(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)
(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.

(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=______.(直接给出答案)
(3)如图(3),CD∥BE,则∠2+∠3-∠1=______.(直接给出答案)
(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.

▼优质解答
答案和解析
解(1):AB∥CD.
理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.
∵∠AEF=150°,
∴∠EFH=30°,
又∵EF⊥GF,
∴∠HFG=90°-30°=60°.
又∵∠DGF=60°,
∴∠HFG=∠DGF,
∴HF∥CD,
则AB∥CD;
(2)延长ED交BC于点F.
∵AB∥DE,
∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,
∴∠C=∠CDE-∠CFE=147°-110°=37°,
故答案是:37°;
(3)延长DC交AB于点F,作△ACF的外角∠4.
∵CD∥BE,
∴∠DFB=∠3,
又∵∠DFB+∠2+∠4=360°,
∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.
∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,
故答案是:180°;
(4)延长BE交直线CD于点G.
∵AB∥CD,
∴∠ABE=∠BGD,
又∵∠ABE=∠DCF,
∴∠BGF=∠DCF,
∴BE∥CF.
理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.
∵∠AEF=150°,
∴∠EFH=30°,
又∵EF⊥GF,
∴∠HFG=90°-30°=60°.
又∵∠DGF=60°,
∴∠HFG=∠DGF,
∴HF∥CD,

则AB∥CD;
(2)延长ED交BC于点F.
∵AB∥DE,
∴∠BFE=∠ABC=70°,则∠CFE=180°-∠BFD=110°,
∴∠C=∠CDE-∠CFE=147°-110°=37°,
故答案是:37°;
(3)延长DC交AB于点F,作△ACF的外角∠4.
∵CD∥BE,
∴∠DFB=∠3,
又∵∠DFB+∠2+∠4=360°,
∴∠2+∠3+∠4=360°,即∠2+∠3=360°-∠4.
∴∠2+∠3-∠1=360°-∠4-∠1=360°-180°=180°,
故答案是:180°;
(4)延长BE交直线CD于点G.
∵AB∥CD,
∴∠ABE=∠BGD,
又∵∠ABE=∠DCF,
∴∠BGF=∠DCF,
∴BE∥CF.
看了 (1)如图(1),EF⊥GF...的网友还看了以下:
f(x)在(a,b)可导,c∈(a,b),当x≠c时f"(x)>0,f"(c)=0,试证y如题,f 2020-05-16 …
微积分余式定理remaindertheorem.完全不懂怎么用.整系数多项式f(x)除以(x-a) 2020-06-10 …
证明:如果函数f(x)在[a,b]上可导,且(f(x)导数的绝对值)小于等于M,则,[(f(b)- 2020-07-16 …
微积分余式定理remaindertheorem.完全不懂怎么用.整系数多项式f(x)除以(x-a) 2020-07-30 …
1,若f:y=3x+1是从集合A={1,2,3,k}到集合B={4,7,a^4,a^2+3}的一个 2020-07-30 …
运用函数抽象式,根据已知条件求周期1)f(x+A)=-f(x)2)f(x+A)=1/f(x)3)f 2020-08-02 …
如果f(x)在(a,b)内可正可负,则对其从a到b积分,结果一定也是可正可负的吗?如果f(x)在(a 2020-11-03 …
已知关系式f(x)=1+x分之2,其中f(a)表示x=a时,关系式对应的值,如f(x)=1+x分之2 2020-11-03 …
甲、乙两个完全相同的密度计放在A、B两种液体中,如图所示,则甲、乙密度计受浮力F甲、F乙和A、B液体 2020-11-08 …
复合函数求导问题复合函数求导时,遇到一种函数通过不同形式两两组合可得到不同的结果时,应该如何解决例如 2020-12-13 …