早教吧作业答案频道 -->数学-->
在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2c•cosC.(1)求角C大小;(2)若sinB+sinA=3,判断△ABC的形状.
题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2c•cosC.
(1)求角C大小;
(2)若sinB+sinA=
,判断△ABC的形状.
(1)求角C大小;
(2)若sinB+sinA=
3 |
▼优质解答
答案和解析
(1)∵acosB+bcosA=2c•cosC,
∴sinAcosB+sinBcosA=2sinCcosC,
整理得:sin(A+B)=sinC=2sinCcosC,即cosC=
,
∵C为三角形的内角,
∴C=60°;
(2)∵A+B+C=180°,C=60°,
∴B=120°-A,
∴sinB+sinA=sin(120°-A)+sinA=
cosA+
sinA=
,
即
sin(A+30°)=
,
∴sin(A+30°)=1,
∴A=60°,B=C=120°-A=60°,
则△ABC为等边三角形.
∴sinAcosB+sinBcosA=2sinCcosC,
整理得:sin(A+B)=sinC=2sinCcosC,即cosC=
1 |
2 |
∵C为三角形的内角,
∴C=60°;
(2)∵A+B+C=180°,C=60°,
∴B=120°-A,
∴sinB+sinA=sin(120°-A)+sinA=
| ||
2 |
3 |
2 |
3 |
即
3 |
3 |
∴sin(A+30°)=1,
∴A=60°,B=C=120°-A=60°,
则△ABC为等边三角形.
看了 在△ABC中,角A,B,C的...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)设n≥2,b=1,c=-1,证明:fn(x) 2020-03-30 …
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2;N=(b+c-a)(c+a- 2020-06-12 …
关于求映射个数的原理集合M的元素个数m,集合N的元素个数n,那么从M到N的映射个数是n的m次幂.这 2020-06-14 …
△ABC的内角A、B、C的对边分别为abc设向量m=(a,b)向量n=(b+c,a)则m//n是A 2020-07-13 …
1.已知A={(x,y)|y/1-x平方=1},B={(x,y)|y=1-x平方},C={(x,y 2020-08-01 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
A{n│n=2k+1,k∈Z}、B{m│m=2l-1,l∈Z}如果n∈A,那么存在k∈Z,使n=2k 2020-10-31 …
x+1的绝对值+y+2的绝对值+3z+6的绝对值=0,求2x-z+y的值.若-4的n次方大于0,-4 2020-10-31 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …