早教吧作业答案频道 -->数学-->
A={x|x=4k+1,k为整数},B{Y|Y=3n+2,n为整数},求A交B
题目详情
A={x|x=4k+1,k为整数},B{Y|Y=3n+2,n为整数},求A交B
▼优质解答
答案和解析
先写几个看看:-3,1,5,9,13,17,21,25,29...
-4,-1,2,5,8,11,14,17,20,23,26,29..
一样的有5,29观察这两个数,都满足:12n-7
下面证明:12n-7=4(3n-2)+1
因为n为整数,所以3n-2为整数,
又:12n-7=3(4n-3)+2
若设C={12n-7|n为整数}
那么:C包含于A,C包含于B
所以这就是交集了..
-4,-1,2,5,8,11,14,17,20,23,26,29..
一样的有5,29观察这两个数,都满足:12n-7
下面证明:12n-7=4(3n-2)+1
因为n为整数,所以3n-2为整数,
又:12n-7=3(4n-3)+2
若设C={12n-7|n为整数}
那么:C包含于A,C包含于B
所以这就是交集了..
看了 A={x|x=4k+1,k为...的网友还看了以下:
,已知a,b关于x的一元二次方程kx2+(k-3)x+k+3=0的两个实数根,其中k为非负整数,点 2020-04-26 …
若存在实数k,使关于x的不等式(x+k)^2≤x对于一切x∈[1,m]恒成立,则m的最大值为我们数 2020-05-16 …
设关于x的二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2-4两根都是整数,求满足条件 2020-05-17 …
已知关于X的不等式(K^2+4K-5)X^2+4(1—K)x+3>0对任何实数X都成立,则关于x的 2020-06-12 …
设(a,b)是一次函数y=(k-2)x+m与反比例函数y=n/x的图像的交点,且a,b是关于x的一 2020-06-12 …
急:高中对数函数的复合函数设f(x)=log1/3[kx^2+(k+2)x+(k+2)],k∈R. 2020-06-18 …
不等式和一些综合问题1.若关于x的不等式x^2+1/2x-(1/2)^n≥0对任意n∈N*在x∈( 2020-06-29 …
已知圆O的直径长为关于x的方程x^2+2(k-2)x+k=0的最大整数根(k为整数)快进来啊已知圆 2020-07-31 …
一元一次不等式1.当K在什么范围内取何值时,关于X的方程(k+2)x-2=1-k(4-x)有不大于 2020-08-03 …
(1)如果三个数中每两个数之和为36,51,29,求这三个数.(2)已知a不等于b,解关于x的方程: 2020-11-24 …