早教吧作业答案频道 -->数学-->
(2014•营口模拟)如图,已知四边形ABCD是平行四边形,BC=2AB,A、B两点的坐标分别是(-12,0),(0,1),C、D两点在反比例函数y=kx(x<0)的图象上,则k的值等于.
题目详情

1 |
2 |
k |
x |
▼优质解答
答案和解析
设点C坐标为(a,
),(a<0),点D的坐标为(x,y).
∵四边形ABCD是平行四边形,
∴AC与BD的中点坐标相同,
∵A、B两点的坐标分别是(-
,0),(0,1),
∴(a-
,
+0)=(x+0,y+1),
则x=a-
,y=
-1,
代入y=
,可得:k=a-2a2 ①;
在Rt△AOB中,AB=
=
,
∴BC=2AB=
,
故BC2=(0-a)2+(
-1)2=(
)2,
整理得:a4+k2-2ka=4a2,
将①k=a-2a2,代入后化简可得:a2=1,
∵a<0,
∴a=-1,
∴k=-1-2=-3.
故答案为:-3.
方法二:
因为AB∥CD,所以点C、D的坐标是点A、B分别向左平移a,向上平移b得到的(a>0,b>0).
故设点C坐标是(-a,2+b),点D坐标是(-1-a,b),
根据K的几何意义,|-a|×|2+b|=|-1-a|×|b|,
整理得2a+ab=b+ab,
解得b=2a.
过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,
由已知易得AD=
k |
a |
∵四边形ABCD是平行四边形,
∴AC与BD的中点坐标相同,
∵A、B两点的坐标分别是(-
1 |
2 |
∴(a-
1 |
2 |
k |
a |
则x=a-
1 |
2 |
k |
a |
代入y=
k |
x |
在Rt△AOB中,AB=
12+(
|
| ||
2 |
∴BC=2AB=
5 |
故BC2=(0-a)2+(
k |
a |
5 |
整理得:a4+k2-2ka=4a2,
将①k=a-2a2,代入后化简可得:a2=1,
∵a<0,
∴a=-1,
∴k=-1-2=-3.
故答案为:-3.
方法二:
因为AB∥CD,所以点C、D的坐标是点A、B分别向左平移a,向上平移b得到的(a>0,b>0).
故设点C坐标是(-a,2+b),点D坐标是(-1-a,b),
根据K的几何意义,|-a|×|2+b|=|-1-a|×|b|,

整理得2a+ab=b+ab,
解得b=2a.
过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,
由已知易得AD=
作业帮用户
2016-12-10
![]() ![]() |
看了 (2014•营口模拟)如图,...的网友还看了以下:
一次函数与一元一次不等式题,今晚急用,快啊,对于一次函数y=kx+b,它与x轴的交点为,当k>0时 2020-04-27 …
方程x^+kx+6=0(^表示2次方)的俩个实数根为x1,x2,方程x^-kx+6=0的俩个实数根 2020-05-16 …
对于一次函数y=kx+b,它的图象与x轴的交点是,当它的图象过一、二、三象限时,不等式kx+b>0 2020-05-16 …
已知关于x的方程x2+kx-2=0.(1)求证:不论k取何值,方程总有两个不相等的实数根.(2)若 2020-06-27 …
数学一元二次方程(要过程,快啊)1.已知方程x平方-6x+k=0有两个相等的实数根,求k的值.2. 2020-07-01 …
如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2) 2020-07-21 …
一次函数1、从数的方面看:一元一次方程kx+b=0(k、b是常数,且k≠0)的解,就是一次函数__ 2020-07-25 …
如图,一次函数y=kx+b(k,b是常数,k≠0)的图象经过A、B两点,则一元一次方程kx+b=0 2020-07-30 …
关于一次函数公式的问题直线y=kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b=0( 2020-08-01 …
Rt三角形ABC中,角C=90°,sinA和cosB是关于X的方程(ks=x平方-kx+1=0)的两 2020-12-01 …