早教吧作业答案频道 -->其他-->
(理)设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.(1)试判断函数g(x)
题目详情
(理)设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.
(1)试判断函数g(x)=2x(x∈R),k(x)=
(x<0)是否为各自定义域上的下凸函数,并说明理由;
(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.
(1)试判断函数g(x)=2x(x∈R),k(x)=
| 1 |
| x |
(2)若h(x)=px2(x∈R)是下凸函数,求实数p的取值范围;
(3)已知f(x)是R上的下凸函数,m是给定的正整数,设f(0)=0,f(m)=2m,记Sf=f(1)+f(2)+f(3)+…+f(m),对于满足条件的任意函数f(x),试求Sf的最大值.
▼优质解答
答案和解析
(1)g(x)=2x是下凸函数,证明如下:
对任意实数x1,x2及α∈(0,1),
有g(αx1+(1-α)x2)-αg(x1)-(1-α)g(x2)=2(αx1+(1-α)x2)-2αx1-2(1-α)x2=0.
即g(αx1+(1-α)x2)≤αg(x1)+(1-α)g(x2).
∴g(x)=2x是C函数.
k(x)=
(x<0)不是下凸函数,证明如下:
取x1=-3,x2=-1,α=
,
则k(αx1+(1-α)x2)-αk(x1)-(1-α)k(x2)=k(-2)-
k(-3)-
k(-1)=-
+
+
>0.
即k(αx1+(1-α)x2)>αk(x1)+(1-α)k(x2).
∴k(x)=
(x<0)不是下凸函数.
(2)h(x)=px2是下凸函数,则对任意实数x1,x2及α∈(0,1),
有h(αx1+(1-α)x2)-αh(x1)-(1-α)h(x2)=p(αx1+(1-α)x2)2-pαx12-p(1-α)x22=p[-α(1-α)x12-α(1-α)x22+2α(1-α)x1x2]=-pα(1-α)(x1-x2)2≤0.
即当p≥0时,h(αx1+(1-α)x2)≤αh(x1)+(1-α)h(x2).
∴当p≥0时,h(x)=px2是下凸函数.
(3)对任意0≤n≤m,取x1=m,x2=0,α=
∈[0,1].
∵f(x)是R上的下凸函数,an=f(n),且a0=0,am=2m
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=
×2m=2n.
那么Sf=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可证f(x)=2x是C函数,且使得an=2n(n=0,1,2,…,m)都成立,此时Sf=m2+m.
综上所述,Sf的最大值为m2+m.
对任意实数x1,x2及α∈(0,1),
有g(αx1+(1-α)x2)-αg(x1)-(1-α)g(x2)=2(αx1+(1-α)x2)-2αx1-2(1-α)x2=0.
即g(αx1+(1-α)x2)≤αg(x1)+(1-α)g(x2).
∴g(x)=2x是C函数.
k(x)=
| 1 |
| x |
取x1=-3,x2=-1,α=
| 1 |
| 2 |
则k(αx1+(1-α)x2)-αk(x1)-(1-α)k(x2)=k(-2)-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
即k(αx1+(1-α)x2)>αk(x1)+(1-α)k(x2).
∴k(x)=
| 1 |
| x |
(2)h(x)=px2是下凸函数,则对任意实数x1,x2及α∈(0,1),
有h(αx1+(1-α)x2)-αh(x1)-(1-α)h(x2)=p(αx1+(1-α)x2)2-pαx12-p(1-α)x22=p[-α(1-α)x12-α(1-α)x22+2α(1-α)x1x2]=-pα(1-α)(x1-x2)2≤0.
即当p≥0时,h(αx1+(1-α)x2)≤αh(x1)+(1-α)h(x2).
∴当p≥0时,h(x)=px2是下凸函数.
(3)对任意0≤n≤m,取x1=m,x2=0,α=
| n |
| m |
∵f(x)是R上的下凸函数,an=f(n),且a0=0,am=2m
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=
| n |
| m |
那么Sf=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可证f(x)=2x是C函数,且使得an=2n(n=0,1,2,…,m)都成立,此时Sf=m2+m.
综上所述,Sf的最大值为m2+m.
看了 (理)设f(x)是定义在D上...的网友还看了以下:
f(x)的定义域为1,2,则f(2x)的定义域是?f(x)的定义域为1,2,则1、f(2x)的定义 2020-05-21 …
一.f(√x+1)=x+1,则函数解析式为?二.已知f(1/2x-1)=2x+3,且f(m)=6, 2020-06-07 …
数学函数我很笨的大家有点耐心1.已知函数f(x)满足f(3x+1)=x+2,则f(-2)的值为2. 2020-06-26 …
涵数F(X)有关定义域1.设涵数F(X)=2X-1则F(X+1)F(F(X))2.涵数F(X)的定 2020-06-29 …
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集 2020-07-25 …
将下列4个数1.2^0.5,1.2^0.6,0.5^1.2,0.6^1.2,按从小到大的顺序排列为 2020-08-01 …
1、设函数f(x)=2x=3,g(x+2)=f(x),则g(x)的表达式是?2、已知f(x-1)= 2020-08-03 …
高中函数变量代换法求高手指教.已知x≠0,函数f(x)满足f(x-1/x)=x^2+1/x^2,则 2020-08-03 …
1,函数f(x)=ax^5+bx³+cx+1,若y(2)=2,则f(-2)=?;2.已知f(x)是偶 2020-12-08 …
关于函数1,定义在R上的函数F(X)满足关系式F(2分之1+X)+F(2分之1-X)=2则F(8分之 2020-12-17 …