早教吧作业答案频道 -->数学-->
1.设L为从(0,0)点沿曲线y=x^2到点(1,1),则∫L2xydx+(y^2+1)dy等于?2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2)等于什么
题目详情
1.设L为从(0,0)点沿曲线y=x^2到点(1,1),则∫L2xydx+(y^2+1)dy等于?
2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2) 等于什么
2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2) 等于什么
▼优质解答
答案和解析
1、设L是从(0,0)点沿曲线y = x²到点(1,1),则∫_L (2xy) dx + (y² + 1) dy =
dy = 2xdx
∫_L (2xy) dx + (y² + 1) dy
= ∫(0~1) 2x(x²) dx + (x⁴ + 1) 2xdx
= ∫(0~1) (2x³ + 2x⁵ + 2x) dx
= 2 * x⁴/4 + 2 * x⁶/6 + x² |(0~1)
= 1/2 + 1/3 + 1
= 11/6
2、设f(x)在(0,+∞)上连续,且∫(0~x²(1 + x)) f(t) dt = x,则f(2) =
∫(0~x²(1 + x)) f(t) dt = x,两边求导
[d/dx x²(1 + x)] * f[x²(1 + x)] = 1
(2x + 3x²) * f[x²(1 + x)] = 1
令x = 1,
(2 + 3)f(1 + 1) = 1
==> f(2) = 1/5
dy = 2xdx
∫_L (2xy) dx + (y² + 1) dy
= ∫(0~1) 2x(x²) dx + (x⁴ + 1) 2xdx
= ∫(0~1) (2x³ + 2x⁵ + 2x) dx
= 2 * x⁴/4 + 2 * x⁶/6 + x² |(0~1)
= 1/2 + 1/3 + 1
= 11/6
2、设f(x)在(0,+∞)上连续,且∫(0~x²(1 + x)) f(t) dt = x,则f(2) =
∫(0~x²(1 + x)) f(t) dt = x,两边求导
[d/dx x²(1 + x)] * f[x²(1 + x)] = 1
(2x + 3x²) * f[x²(1 + x)] = 1
令x = 1,
(2 + 3)f(1 + 1) = 1
==> f(2) = 1/5
看了 1.设L为从(0,0)点沿曲...的网友还看了以下:
在平面直角坐标系中,A(4,0),B(0,-4),C(0,4),点M为射线OA上A点右侧一动点在平 2020-05-13 …
设f(x,y)在(0,0)处连续,limx,y→0f(x,y)-1ex2+y2-1=4,则()A. 2020-05-14 …
解方程:1、x除三分之二=2.5 2、5x减1.5x乘8=0 3、5x减x=0.36 4、八分之( 2020-05-16 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
1.设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5 2020-05-21 …
设f(x)=|x(1-x)|,则()A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x) 2020-06-30 …
设函数f(x)=g(x)sin1/x(x不得于0);0(x=0)高数题设函数f(x)=g(x)si 2020-07-16 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
1.已知inti=0,x=1,y=0;在下列选项使i的值变成1的语句是().(A)if(x&&y)i 2020-11-01 …
1若fx在x=0处可导f(0)=0limx趋向于0f(x)/x=?2设fx在x=1处可导且lim△x 2020-11-01 …