早教吧作业答案频道 -->数学-->
1.设L为从(0,0)点沿曲线y=x^2到点(1,1),则∫L2xydx+(y^2+1)dy等于?2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2)等于什么
题目详情
1.设L为从(0,0)点沿曲线y=x^2到点(1,1),则∫L2xydx+(y^2+1)dy等于?
2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2) 等于什么
2.设f(x)在(0,+无穷)上连续,且∫(0,x^2(1+x))f(t)dt=x,则f(2) 等于什么
▼优质解答
答案和解析
1、设L是从(0,0)点沿曲线y = x²到点(1,1),则∫_L (2xy) dx + (y² + 1) dy =
dy = 2xdx
∫_L (2xy) dx + (y² + 1) dy
= ∫(0~1) 2x(x²) dx + (x⁴ + 1) 2xdx
= ∫(0~1) (2x³ + 2x⁵ + 2x) dx
= 2 * x⁴/4 + 2 * x⁶/6 + x² |(0~1)
= 1/2 + 1/3 + 1
= 11/6
2、设f(x)在(0,+∞)上连续,且∫(0~x²(1 + x)) f(t) dt = x,则f(2) =
∫(0~x²(1 + x)) f(t) dt = x,两边求导
[d/dx x²(1 + x)] * f[x²(1 + x)] = 1
(2x + 3x²) * f[x²(1 + x)] = 1
令x = 1,
(2 + 3)f(1 + 1) = 1
==> f(2) = 1/5
dy = 2xdx
∫_L (2xy) dx + (y² + 1) dy
= ∫(0~1) 2x(x²) dx + (x⁴ + 1) 2xdx
= ∫(0~1) (2x³ + 2x⁵ + 2x) dx
= 2 * x⁴/4 + 2 * x⁶/6 + x² |(0~1)
= 1/2 + 1/3 + 1
= 11/6
2、设f(x)在(0,+∞)上连续,且∫(0~x²(1 + x)) f(t) dt = x,则f(2) =
∫(0~x²(1 + x)) f(t) dt = x,两边求导
[d/dx x²(1 + x)] * f[x²(1 + x)] = 1
(2x + 3x²) * f[x²(1 + x)] = 1
令x = 1,
(2 + 3)f(1 + 1) = 1
==> f(2) = 1/5
看了 1.设L为从(0,0)点沿曲...的网友还看了以下:
导数f(x)=e^x+sinx,g(x)=ax.F(x)=f(x)-g(x).(1)x=0是F(x) 2020-03-30 …
求函数在点x=0处是否存在极限?一定要过程!求高人解答!f(x)={x+1,-1≤x≤0;x,0< 2020-05-17 …
y=根号(x^2+4)-根号(x^2+2x+10)就是点P(x,0)到点A(0,-4)和点B(-1 2020-06-03 …
数学题进来帮下1设函数f(x)={上面是x+1,x≤0下面是a,x>0,在点x=0处连续,则a=2 2020-07-15 …
设函数(x)=ax^2lnx+b(x-1)(x>0),曲线y=f(x)过点(e,e^2-e+1)且 2020-07-15 …
求((1+X)^0.5-(1-X)^0.5)/X的极限给f(0)补充定义一个什么数值,能使f(x) 2020-07-31 …
求曲线y=e∧x上与y=x平行的曲线方程.∵y'=(e∧x)'=e∧x令y'=1,解出x=0∴切点 2020-08-01 …
f(x)=x^2,求f/(1)(注:f(1+△x)-f(1)是分子△x是分母打不出下划线)f/(1) 2020-11-01 …
cadli怎么看对正=上,比例=1.00,样式=STANDARD顶点0:X=1104777Y=502 2020-11-07 …
设D=[0,1]x[0,1]f(x,y)=1/qx+1/qy,当(x,y)为D中有理点f(x,y)= 2020-12-07 …