早教吧作业答案频道 -->数学-->
已知F1,F2是双曲线y2a2-x2b2=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为()A.2B.2C.3D.3
题目详情
已知F1,F2是双曲线
-
=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.
B. 2
C.
D. 3
y2 |
a2 |
x2 |
b2 |
A.
2 |
B. 2
C.
3 |
D. 3
▼优质解答
答案和解析
由题意,F1(0,-c),F2(0,c),一条渐近线方程为y=
x,则F2到渐近线的距离为
=b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
a |
b |
bc | ||
|
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
看了 已知F1,F2是双曲线y2a...的网友还看了以下:
过抛物线y^2=2px(>0)的对称轴上的定点M(m,0)作直线AB与抛物线相交与A,B两点1试证明 2020-03-31 …
过抛物线y2=2px(p>0)的对称轴上的定点M(m>0),作直线AB与抛物线相交于A、B两点.若 2020-05-16 …
已知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交于A,B两 2020-06-21 …
已知椭圆C:a^2分之x^2+b^2分之y^2=1(a大于0b大于0)焦点在x轴上它的一个顶点B与 2020-06-21 …
已知点A(0,2)和B(0,-2)过点A的直线与过点B的直线交于点P,若直线PAPB,的斜率之积为 2020-06-23 …
利率互换问题A、B两公司,A公司的资信等级较高,银行贷款的浮动利率对A公司为LIBOR+0.25% 2020-06-30 …
散热器肋片效率计算Q=hc×F对流×△t×ηhc-----自然对流换热系数,w/m2.k△t--- 2020-07-02 …
已知双曲线E:x2a2-y2b2=1(a>0,b>0),点F为E的左焦点,点P为E上位于第一象限内 2020-07-26 …
已知椭圆E:X2/a2+Y2/b2=1(a>b>0)过点P(1,√2/2),离心率e=√2/2.椭 2020-08-01 …
已知椭圆C:+=1(a>b>0)过点(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点N(,0 2021-01-13 …