早教吧作业答案频道 -->数学-->
已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b
题目详情
已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b的取值范围.
(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b的取值范围.
▼优质解答
答案和解析
(Ⅰ)因为x∈[-1,1],则2+x∈[1,3],
由已知,有对任意的x∈[-1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,
记f(x)max-f(x)min=M,则M≤4.
当|-
|>1,即|b|>2时,M=|f(1)-f(-1)|=|2b|>4,与M≤4矛盾;
当|-
|≤1,即|b|≤2时,M=max{f(1),f(-1)}-f(-
)=
-f(-
)=(1+
)2≤4,
解得:|b|≤2,
即-2≤b≤2,
综上,b的取值范围为-2≤b≤2.
由已知,有对任意的x∈[-1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,
记f(x)max-f(x)min=M,则M≤4.
当|-
b |
2 |
当|-
b |
2 |
b |
2 |
f(1)+f(-1)+|f(1)-f(-1)| |
2 |
b |
2 |
|b| |
2 |
解得:|b|≤2,
即-2≤b≤2,
综上,b的取值范围为-2≤b≤2.
看了 已知二次函数f(x)=x2+...的网友还看了以下:
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤ 2020-05-13 …
设:a∈R,函数f(x)=ax³-3x²若函数g(x)=f(x)+f(x)的导函数,x∈[0,2] 2020-06-06 …
关于函数f(x)=lg[(x^2+1)/|x|](x≠0,x属于R),有下列命题:1、函数的图像关 2020-06-20 …
如何证明单峰函数?设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0 2020-07-30 …
1.下列集合中为空集的是(x2表示x的平方)A.{x|ex=1}B.{0}C.{(x,y)|x2+ 2020-08-01 …
关于复合函数的问题.设f(x)={0,x≤0;x,x>0这是个分段函数,下同.g(x)={0,x≤0 2020-11-01 …
下列函数中,可以作为某个随机变量的分布函数是()A.F1(x)=1+x2,-∞<x<+∞B.F2(x 2020-11-03 …
当函数f(x)的定义域内含0且为奇函数时,则必有f(0)=0这是为什么?从定义可知f(-x)=-f( 2020-12-02 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …
关于高一二次函数解题方法初中毕业了,看了下高中的二次函数,其中有一题:若二次函数f(x)满足f(x+ 2020-12-12 …