早教吧作业答案频道 -->数学-->
已知函数f(x)=ex-e-x(x∈R),(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使得不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求t,若不存在,说明理由.
题目详情
已知函数f(x)=ex-e-x(x∈R),
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使得不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求t,若不存在,说明理由.
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使得不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求t,若不存在,说明理由.
▼优质解答
答案和解析
(1)∵f(x)=ex−
∴ f(x)单调递增
∴f(x)是奇函数
(2)假设存在∵f(x-t)+f(x2-t2)≥0恒成立
即存在t=-
使不等式f(x-t)+f(x2-t2)≥0恒成立
1 |
ex |
|
∴f(x)是奇函数
(2)假设存在∵f(x-t)+f(x2-t2)≥0恒成立
|
即存在t=-
1 |
2 |
看了 已知函数f(x)=ex-e-...的网友还看了以下:
一个关于求导数的答案不明白的地方求f(x)=2x^2+x-1(x>0)的反函数在x=2处的切线的斜 2020-06-06 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
(12分)已知函数f(x)=ax3-bx2+(2-b)x+1,在x=x2处取得极大值,在x=x2处 2020-07-20 …
高数证明题1设函数f(x)在[1.2]上连续,在{1,2}内可导,且f(2)=0,F(x)=(x- 2020-07-22 …
关于充分必要条件有点糊涂,例:F(x)在X上有界的充分必要条件是它在X上既有上界又有下界.证明:首 2020-07-31 …
已知f(x)在点a的邻域内有定义,且limx→a{f(x)-f(a)}/(x-a)^2=c≠0,证 2020-07-31 …
求函数f(x)=x^2ln(1+x)在x=0处的n阶导数.已经算出了f(x)的n阶导数,但是不明求 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x) 2020-12-14 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …