早教吧作业答案频道 -->数学-->
设f(x)=∫sint/π-tdt(0→x),求∫f(x)dx(0→π)
题目详情
设f(x)=∫sint/π-tdt(0→x),求∫f(x)dx(0→π)
▼优质解答
答案和解析
记f'(x) = sinx/(π - x)
∫(0~π) f(x) dx
= xf(x) - ∫(0~π) xf(x)' dx、
= πf(π) - ∫(0~π) x · sinx/(π - x) dx
= π∫(0~π) sint/(π - t) dt - ∫(0~π) xsinx/(π - x) dx
= π∫(0~π) sinx/(π - x) dx - ∫(0~π) xsinx/(π - x) dx
= ∫(0~π) (πsinx - xsinx)/(π - x) dx
= ∫(0~π) (π - x)sinx/(π - x) dx
= ∫(0~π) sinx dx
= - cosx |_(0~π)
= - (- 1 - 1)
= 2
∫(0~π) f(x) dx
= xf(x) - ∫(0~π) xf(x)' dx、
= πf(π) - ∫(0~π) x · sinx/(π - x) dx
= π∫(0~π) sint/(π - t) dt - ∫(0~π) xsinx/(π - x) dx
= π∫(0~π) sinx/(π - x) dx - ∫(0~π) xsinx/(π - x) dx
= ∫(0~π) (πsinx - xsinx)/(π - x) dx
= ∫(0~π) (π - x)sinx/(π - x) dx
= ∫(0~π) sinx dx
= - cosx |_(0~π)
= - (- 1 - 1)
= 2
看了 设f(x)=∫sint/π-...的网友还看了以下:
微积分——求积分求积分咋求啊!要求∫f(x)dx,我就会f(a)dx+f(a+dx)dx+f(a+ 2020-05-14 …
已知f(x)之一原函数为sin3x,求∫f'(x)dx书上的答案是∫f'(x)dx=f(x)+Cf 2020-05-19 …
关于微积分的请解答的通俗点.1.微分有求导公式(x^n)'=nx^n-1,那么积分∫f(x)dx怎 2020-06-10 …
大学微积分题目设fx为连续函数,则下列等式中正确的是A.∫f'(x)dx=f(x)B.d/dx∫f 2020-06-10 …
设f(x)具有连续的导数,下列关系式正确的是?A、d∫f(x)dx=f(x)B、∫f`(x)dx= 2020-06-10 …
注意!这里∫代表的是积分上限为2,下限为1的定积分号.书上有两个公式1:〔∫f(x)dx]′=f( 2020-06-10 …
高数定积分2∫(上限1,下限0)f(x)dx+f(x)-x=0求∫(上限1,下限0)f(x)dx那 2020-07-31 …
f(x)的二阶导数都是dy/dx的平方?//dy^2/dx^2f'(x)=dy/dx(f(x)的一 2020-08-02 …
求不定积分有人说dx可以不要,F'(x)=f(x),即f(x)的不定积分是F(x)+c,为什么加d 2020-08-03 …
∫f'(x^2)dx=x^5+C,求f(x),为什么(∫f'(x^2)dx)‘=f'(x^2),∫f 2020-12-09 …