早教吧作业答案频道 -->其他-->
哪位大神来设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=3/2,a3=5/4,且当n≥2时,4S(n+2)+5Sn=8S(n+1)+S(n-1)。(1)求a4的值(2)证明:{a(n+1)-1/2an}为等比数列(3)求数列{an}的通项
题目详情
哪位大神来
设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=3/2,a3=5/4,且当n≥2时,4S(n+2)+5Sn=8
S(n+1)+S(n-1)。
(1)求a4的值
(2)证明:{a(n+1)-1/2an}为等比数列
(3)求数列{an}的通项公式
第一小问不用做,本人会
设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=3/2,a3=5/4,且当n≥2时,4S(n+2)+5Sn=8
S(n+1)+S(n-1)。
(1)求a4的值
(2)证明:{a(n+1)-1/2an}为等比数列
(3)求数列{an}的通项公式
第一小问不用做,本人会
▼优质解答
答案和解析
4S(n+2)+5Sn=8S(n+1) +S(n-1)
4[S(n+2) -S(n+1)] = 4[S(n+1)- Sn] - [Sn -S(n-1)]
4a(n+2) = 4a(n+1) - an
a(n+2) = a(n+1) - (1/4)an
a(n+2) -(1/2)a(n+1) = (1/2)[ a(n+1) - (1/2)an ]
=>{a(n+1) - (1/2)an} 是等比数列, q=1/2
a(n+1) - (1/2)an = (1/2)^(n-2) .(a3 - (1/2)a2)
=(1/2)^(n-2) .(5/4 - (1/2)(3/2))
=(1/2)^(n-1)
2^(n+1)a(n+1) -2^n. an = 2
=>{ 2^n. an } 是等差数列, d=2
2^n. an - 2^3. a3 = 2(n-3)
2^n. an - 10 = 2(n-3)
2^n. an = 2(n+2)
an = (n+2)/2^(n-1)
ie
an =1 ; n=1
=3/2 ; n=2
=(n+2)/2^(n-1) ; n>=3
a4 = (4+2)/2^3
=6/8
=3/4
4[S(n+2) -S(n+1)] = 4[S(n+1)- Sn] - [Sn -S(n-1)]
4a(n+2) = 4a(n+1) - an
a(n+2) = a(n+1) - (1/4)an
a(n+2) -(1/2)a(n+1) = (1/2)[ a(n+1) - (1/2)an ]
=>{a(n+1) - (1/2)an} 是等比数列, q=1/2
a(n+1) - (1/2)an = (1/2)^(n-2) .(a3 - (1/2)a2)
=(1/2)^(n-2) .(5/4 - (1/2)(3/2))
=(1/2)^(n-1)
2^(n+1)a(n+1) -2^n. an = 2
=>{ 2^n. an } 是等差数列, d=2
2^n. an - 2^3. a3 = 2(n-3)
2^n. an - 10 = 2(n-3)
2^n. an = 2(n+2)
an = (n+2)/2^(n-1)
ie
an =1 ; n=1
=3/2 ; n=2
=(n+2)/2^(n-1) ; n>=3
a4 = (4+2)/2^3
=6/8
=3/4
看了 哪位大神来设数列{an}的前...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
已知数列{an}的前n项和Sn=n^2+2n-1 则a1+a3+a5+……+a25=( )已知数列 2020-05-16 …
数列怎么这么难!1.已知a(1)=3且a(n)=S(n-1)+2^n,求an及Sn.2.已知S(n 2020-06-04 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
求通项公式和前n项和Sn1.已知数列an=1/n(n+1)(n+2)(n+3)求Sn2.求和2+2 2020-06-08 …
已知数列an的前n项和sn=n²+n/2,①求an②设bn=an·2^n,求数列bn的前n项已知数 2020-07-18 …
等差数列求Tn什么时候该讨论n=1,n>2?已知数列{an}的前n项和Sn=-3/2n^2+205 2020-07-18 …
已知5个连续整数的和是m,它们的平方和是n,且n=2(6m+5),求这5个连续整数.我这样列的式已 2020-07-31 …
已知递推公式An=n*A(n-1)+(n-1)!,求An可以写成其他形式吗?不用阶乘,而用关于n的 2020-08-01 …
有n个站点,每个站点发生某个事件的概率是p,那么发生事件总数为i的概率是b(i;n,p),b(i;n 2020-11-22 …