如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.
如图,点 P 是 ∠ AOB 内任意一点, OP=5cm ,点 M 和点 N 分别是射线 OA 和射线 OB 上的动点, PN+PM+MN 的最小值是 5cm ,则 ∠ AOB 的度数是 __________ .
30 ° .
【考点】轴对称 - 最短路线问题.
【分析】分别作点 P 关于 OA 、 OB 的对称点 C 、 D ,连接 CD ,分别交 OA 、 OB 于点 M 、 N ,连接 OC 、 OD 、 PM 、 PN 、 MN ,由对称的性质得出 PM=CM , OP=OC , ∠ COA= ∠ POA ; PN=DN , OP=OD , ∠ DOB= ∠ POB ,得出 ∠ AOB= ∠ COD ,证出 △ OCD 是等边三角形,得出 ∠ COD=60 ° ,即可得出结果.
【解答】分别作点 P 关于 OA 、 OB 的对称点 C 、 D ,连接 CD ,
分别交 OA 、 OB 于点 M 、 N ,连接 OC 、 OD 、 PM 、 PN 、 MN ,如 图所示:
∵ 点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,
∴ PM=DM , OP=OD , ∠ DOA= ∠ POA ;
∵ 点 P 关于 OB 的对称点为 C ,
∴ PN=CN , OP=OC , ∠ COB= ∠ POB ,
∴ OC=OP=OD , ∠ AOB= ∠ COD ,
∵ PN+PM+MN 的最小值是 5cm ,
∴ PM+PN+MN=5 ,
∴ DM+CN+MN=5 ,
即 CD=5=OP ,
∴ OC=OD=CD ,
即 △ OCD 是等边三角形,
∴∠ COD=60 ° ,
∴∠ AOB=30 ° .
故答案为: 30 ° .
【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质, 证明三角形是等边三角形是解决问题的关键.
用一副三角尺可以画出的角是a160度b四十度c120度是哪一个呢 2020-04-13 …
“种子虽小,却有让大力士膛目结舌的力量,正如一个人不要忽视自己的力量。”这句话给我们的启示错误的是 2020-05-14 …
两个共点力的大小都是8牛,若要这两个力的合力大小也是8牛,则两力之间的夹角A.可能是45度B.一定 2020-05-17 …
求:A地北京时间12:12测得A地正午太阳高度是66度,B地为12:04测得正午太阳高度为60度, 2020-05-24 …
如果在夏至的时候发生月全食,那当时月亮的纬度大致是A0度B-23度C23度D以上都有可能 2020-06-14 …
搞脑筋的题目警察在盘问5个小偷嫌疑犯:ABCDE他们当中有3个人说真话.根据他们的说法,你能判断出 2020-06-17 …
宗法制是古代中国一项对社会结构产生重大影响的制度。下列对这一制度的认识中,正确的是()A.各级贵族 2020-06-22 …
如图是一个温度控制报警系统示意图,关于这种温度控制报警系统控制方框图,下列说法不正确的是()A.输 2020-06-25 …
关于这个警察与小偷的数学逻辑问题,:警察在盘问5个小偷嫌疑犯:ABCDE他们当中有3个人说真话.根 2020-07-08 …
下列角中终边与330度相同的角是A30度B—30度C下列角中终边与330度相同的角是A30度B—3 2020-07-09 …