早教吧 育儿知识 作业答案 考试题库 百科 知识分享

第1式:向量OP=λ向量OA+μ向量OB(λ+μ=1)第2式:向量OP=λ1向量OA+λ2向量OB+λ3向量OC1第一式是证明共线的话:那已知e1,e2,e3为空间的一个基底,且oa=e1+2e2-e3,ob=-3e1+e2+2e3,oc=e1+e2+e3问:a,b,c是否四点

题目详情
第1式:向量OP=λ 向量OA+μ向量OB(λ +μ=1) 第2式:向量OP=λ1 向量OA+λ2向量OB+λ3向量OC 1
第一式是证明共线的话:那
已知e1,e2,e3为空间的一个基底,且oa=e1+2e2-e3,ob=-3e1+e2+2e3,oc=e1+e2+e3
问:a,b,c是否四点共面
解思路:假设四点共面,则存在实数λ,μ使 OA→=λOB→+μOC→,代进求证!
我想问:这不是跟第一式一样吗?为什么一个是共线,一个是共面?
▼优质解答
答案和解析
第1式: 向量OP=λ 向量OA+μ向量OB(λ +μ=1)是二维的(平面的),
第2式:向量OP=λ1 向量OA+λ2向量OB+λ3向量OC 是三维的(空间的),可以推出A,B,C,P四点共面.
不能把①式代入②式.