早教吧作业答案频道 -->其他-->
(2013•下城区二模)已知抛物线y=ax2+bx+3经过点A(-1,0),B(3,0),交y轴于点C,M为抛物线的顶点,连接MB.(1)求该抛物线的解析式;(2)在y轴上是否存在点P满足△PBM是直角三角形?
题目详情

(1)求该抛物线的解析式;
(2)在y轴上是否存在点P满足△PBM是直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由;
(3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为M′,求∠MBM′的度数.
▼优质解答
答案和解析
(1)∵抛物线y=ax2+bx+3经过点A(-1,0),B(3,0)
∴
,
解得:
,
∴y=-x2+2x+3;
∴y=-(x-1)2+4,
∴M(1,4).
(2)设点P的坐标为(0,y),
①若∠MPB=90°,如图1,过点M作ME⊥x轴,MF⊥y轴,
∴∠MFP=∠BOP=90°.
∵∠MPB=90°,
∴∠MPF=∠PBO,
∴Rt△PFM∽Rt△BOP,
∴
=
.
∴
=
,
解得:y1=1,y2=3
∴点P的坐标为(0,1),(0,3);
②若∠PMB=90°,如图2,过点M作ME⊥x轴,MF⊥y轴,
同理,Rt△PFM∽Rt△BEM,
∴
=
,
解得:y=
∴点P的坐标为 (0,
)
③若∠MBP=90,如图3,过点M作ME⊥x轴,MF⊥y轴,
同理,Rt△POB∽Rt△BEM,
∴
=
,
解得:y=-
,
∴点P的坐标为 (0,-
).
综上:△PBM是直角三角形时,P点的坐标为(0,1),(0,3),(0,
),(0,-

∴
|
解得:
|
∴y=-x2+2x+3;
∴y=-(x-1)2+4,
∴M(1,4).
(2)设点P的坐标为(0,y),
①若∠MPB=90°,如图1,过点M作ME⊥x轴,MF⊥y轴,
∴∠MFP=∠BOP=90°.
∵∠MPB=90°,
∴∠MPF=∠PBO,

∴Rt△PFM∽Rt△BOP,
∴
PF |
BO |
FM |
PO |
∴
4−y |
3 |
1 |
y |
解得:y1=1,y2=3
∴点P的坐标为(0,1),(0,3);
②若∠PMB=90°,如图2,过点M作ME⊥x轴,MF⊥y轴,
同理,Rt△PFM∽Rt△BEM,
∴
4−y |
2 |
1 |
4 |
解得:y=
7 |
2 |
∴点P的坐标为 (0,
7 |
2 |
③若∠MBP=90,如图3,过点M作ME⊥x轴,MF⊥y轴,
同理,Rt△POB∽Rt△BEM,
∴
−y |
2 |
3 |
4 |
解得:y=-
3 |
2 |
∴点P的坐标为 (0,-
3 |
2 |
综上:△PBM是直角三角形时,P点的坐标为(0,1),(0,3),(0,
7 |
2 |
作业帮用户
2017-10-02
|
看了 (2013•下城区二模)已知...的网友还看了以下:
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1,0),与y轴 2020-04-15 …
如图,抛物线y=ax²+bx+4的对称轴是直线x=3/2,与x轴交于C,并且点A的坐标为(-1,0 2020-05-15 …
如图,抛物线y=x²+bx+c过点a(-4.-3),与y轴交于点b,对称轴是x=-3,(1) 求抛 2020-05-15 …
如图,抛物线y=ax^2+bx+c交x轴于A,B两点,交y轴的正半轴于点C,抛物线的对称轴是直线x 2020-05-15 …
抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3 2020-05-15 …
如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线 2020-06-29 …
抛物线y=ax2+bx(a≠0)经过点A(1,94),对称轴是直线x=2,顶点是D,与x轴正半轴的 2020-07-21 …
2道会的请回答啊!已知关于x的两次函数y=ax2+bx+c的图像的对称轴是直线x=2,图像在x轴上 2020-07-30 …
已知抛物线y=x方+bx+3a,过点A(1,0)B(0,-3)与x轴交于另一点c.已知抛物线y=x方 2020-11-27 …
如图,直线y=2x-2与x轴交于点A,抛物线y=ax2+bx+c的对称轴是直线x=3,抛物线经过点A 2021-01-15 …