早教吧作业答案频道 -->数学-->
如图,抛物线y=x²+bx+c过点a(-4.-3),与y轴交于点b,对称轴是x=-3,(1) 求抛物线的解析式(2) 若与x轴平行的直线与抛物线交于c、d两点,点c在对称轴左侧,且cd=8,求△bcd的面积.
题目详情
如图,抛物线y=x²+bx+c过点a(-4.-3),与y轴交于点b,对称轴是x=-3,
(1) 求抛物线的解析式
(2) 若与x轴平行的直线与抛物线交于c、d两点,点c在对称轴左侧,且cd=8,求△bcd的面积.
(1) 求抛物线的解析式
(2) 若与x轴平行的直线与抛物线交于c、d两点,点c在对称轴左侧,且cd=8,求△bcd的面积.
▼优质解答
答案和解析
答案见图(希望采纳)

很高兴为您解答,【华工王师】团队为您答题.
请点击下面的【选为满意回答】按钮.

很高兴为您解答,【华工王师】团队为您答题.
请点击下面的【选为满意回答】按钮.
看了 如图,抛物线y=x²+bx+...的网友还看了以下:
微积分里 dx到底是对x积分还是对x微分?.. 2020-05-13 …
(1/2)求积分:(1)上限9下限4根号x/(根号x-1)dx(2)f(x)=1+x,0小于等于x 2020-06-04 …
关于周期问题的高数选择和一道比大小(1)f(x)是以T为周期的可微函数,下列也是以T为周期的函数是 2020-07-07 …
如何将一元函数积分转化为二元函数的积分不好意思,记错题目了.在数一二李书的定积分不等式那一节,有一 2020-07-25 …
问个微积分问题,对于定积分∫A(-A)f(x)dx(其中A在上,-A在下),当f(x)是奇函数时候 2020-07-30 …
关于定积分的问题设f(x)是连续函数,且f(x)=x+2∫f(t)dt.(积分区间为[0,1]). 2020-07-30 …
一道高数题求解设函数f(x)在区间[0,+无穷)可导,f(0)=0,且其反函数为g(x),若定积分 2020-07-31 …
关于积分上下限的问题关于定积分∫[a->b]]的几何意义,若f(x)>0则定积分表示x=ax=bf 2020-07-31 …
求教:二重积分对称性定理,积分区域关于原点对称时的问题二重积分对称性定理:积分区域D关于原点对称, 2020-08-01 …
对于积分上限函数∫(a,t)f(y)dy,知道被积函数是f(t).那么对于∫(a,t)f(x+y) 2020-08-02 …