早教吧作业答案频道 -->数学-->
已知函数f(x)=ax+x2-xlna,a>1.(1)求证:函数f(x)在(0,+∞)上单调递增;(2)对∀x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
题目详情
已知函数f(x)=ax+x2-xlna,a>1.
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)对∀x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)对∀x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
▼优质解答
答案和解析
(1)f′(x)=axlna+2x-lna=2x+(ax-1)lna. …(2分)
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0,…(5分)
故函数f(x)在(0,+∞)上单调递增.…(6分)
(2)由(1)可知,当x∈(-∞,0)时,f′(x)<0,
故函数f(x)在(-∞,0)上单调递减.…(7分)
所以,f(x)在区间[-1,0]上单调递减,在区间[0,1]上单调递增.
所以fmin=f(0)=1,fmax=max{f(-1),f(1)}.…(9分)
f(-1)=
+1+lna,f(1)=a+1-lna,
f(1)-f(-1)=a-
-2lna,
记g(x)=x-
-2lnx,则g′(x)=1+
−
=(
−1)2,(当x=1时取到等号),所以g(x)=x-
-2lnx递增,
故f(1)-f(-1)=a-
-2lna>0 …(11分)
所以f(1)>f(-1),于是fmax=f(1)=a+1-lna.(12分)
故对∀x1,x2∈[-1,1],|f(x1)-f(x2)|max=|f(1)-f(0)|=a-lna,所以a-lna≤e-1,所以1<a≤e.…(14分)
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0,…(5分)
故函数f(x)在(0,+∞)上单调递增.…(6分)
(2)由(1)可知,当x∈(-∞,0)时,f′(x)<0,
故函数f(x)在(-∞,0)上单调递减.…(7分)
所以,f(x)在区间[-1,0]上单调递减,在区间[0,1]上单调递增.
所以fmin=f(0)=1,fmax=max{f(-1),f(1)}.…(9分)
f(-1)=
1 |
a |
f(1)-f(-1)=a-
1 |
a |
记g(x)=x-
1 |
x |
1 |
x2 |
2 |
x |
1 |
x |
1 |
x |
故f(1)-f(-1)=a-
1 |
a |
所以f(1)>f(-1),于是fmax=f(1)=a+1-lna.(12分)
故对∀x1,x2∈[-1,1],|f(x1)-f(x2)|max=|f(1)-f(0)|=a-lna,所以a-lna≤e-1,所以1<a≤e.…(14分)
看了 已知函数f(x)=ax+x2...的网友还看了以下:
已知函数f(x)对任意x,y属于R,满足条件f(x)+f(y)=2+f(x+y)且当x大于0时,f 2020-04-26 …
已知函数f(x)对任意x,y属于R,满足条件f(x)+f(y)=2+f(x+y)且当x大于0时,f 2020-04-26 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
设f(x)在(-1,1)内有二阶导数,f(0)=f′(0)=0,|f″(x)|2≤|f(x)•f′ 2020-06-10 …
证明题!如果a是f′′′(x)的一个k重跟,证明g(x)=(x-a)/2[f′(x)+f′(a)] 2020-06-12 …
已知函数f(x)对任意x、y属于R有f(x)f(y)=2+f(x+y),当x>0,fx>2,f3= 2020-07-21 …
设y=f(x)是R上的奇函数,且当x∈R是,都有f(x+2)=-f(x)(1)试证明f(x)是周期 2020-08-01 …
设定义在R上的函数F(X),对任意X,Y∈R有F(X+Y)=F(X)f(Y)设定义在R上的函数f( 2020-08-02 …
已知f(x)是定义在R上的函数,且对任意的x,y∈R,有f(x)+f(y)=2f((x+y)/2)f 2020-11-06 …
函数和不等式的问题已知函数f(x)在R上是增函数,a,b属于R1.求证:如果a+b>=0,那么f(a 2020-12-23 …