早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{ann}是等差数列;(Ⅱ)设bn=3n•an,求数列{bn}的前n项和Sn.

题目详情
数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(Ⅰ)证明:数列{
an
n
}是等差数列;
(Ⅱ)设bn=3n
an
,求数列{bn}的前n项和Sn
▼优质解答
答案和解析
证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),
an+1
n+1
an
n
+1,
an+1
n+1
an
n
=1,
∴数列{
an
n
}是以1为首项,以1为公差的等差数列;
(Ⅱ)由(Ⅰ)知,
an
n
=1+(n−1)•1=n,
an=n2,
bn=3n
an
=n•3n
Sn=1×3+2×32+3×33+…+(n−1)•3n-1+n•3n
3Sn=1×32+2×33+3×34+…+(n−1)•3n+n•3n+1
①-②得−2Sn=3+32+33+…+3n-n•3n+1
=
3−3n+1
1−3
−n•3n+1
=
1−2n
2
•3n+1−
3
2

Sn=
2n−1
4
•3n+1+
3
4