早教吧作业答案频道 -->其他-->
数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{ann}是等差数列;(Ⅱ)设bn=3n•an,求数列{bn}的前n项和Sn.
题目详情
数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(Ⅰ)证明:数列{
}是等差数列;
(Ⅱ)设bn=3n•
,求数列{bn}的前n项和Sn.
(Ⅰ)证明:数列{
an |
n |
(Ⅱ)设bn=3n•
an |
▼优质解答
答案和解析
证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),
∴
=
+1,
∴
−
=1,
∴数列{
}是以1为首项,以1为公差的等差数列;
(Ⅱ)由(Ⅰ)知,
=1+(n−1)•1=n,
∴an=n2,
bn=3n•
=n•3n,
∴Sn=1×3+2×32+3×33+…+(n−1)•3n-1+n•3n①
3Sn=1×32+2×33+3×34+…+(n−1)•3n+n•3n+1②
①-②得−2Sn=3+32+33+…+3n-n•3n+1
=
−n•3n+1
=
•3n+1−
∴Sn=
•3n+1+
∴
an+1 |
n+1 |
an |
n |
∴
an+1 |
n+1 |
an |
n |
∴数列{
an |
n |
(Ⅱ)由(Ⅰ)知,
an |
n |
∴an=n2,
bn=3n•
an |
∴Sn=1×3+2×32+3×33+…+(n−1)•3n-1+n•3n①
3Sn=1×32+2×33+3×34+…+(n−1)•3n+n•3n+1②
①-②得−2Sn=3+32+33+…+3n-n•3n+1
=
3−3n+1 |
1−3 |
=
1−2n |
2 |
3 |
2 |
∴Sn=
2n−1 |
4 |
3 |
4 |
看了 数列{an}满足a1=1,n...的网友还看了以下:
已知RO32-的核内有x个中子,R的质量数为A,则mgRO32-含有电子的物质的量为()A.m(A 2020-05-13 …
已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则()A.n⊥βB.n∥βC.n⊥αD.n∥ 2020-05-13 …
设正整数m,n满足1<n≤m,F1,F2,F3,…,Fk为集合{1,2,3,…,m}的n元子集,且 2020-05-14 …
(2014•绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应 2020-07-08 …
如图所示,质量MA=2m的直杆A悬于离地面很高处,杆A上套有质量MB=m的小环B.将小环B由静止释 2020-07-10 …
设非空集合M、N满足:M={x|f(x)=0},N={x|g(x)=0},P={x|f(x)g(x 2020-08-01 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
若数列An={an}:a1,aa,…,an(n≥a)满足|ak+1-ak|=1(k=1,a,…,n- 2020-10-31 …
已知函数f(x)=x3-x2,x∈R.(Ⅰ)若正数m、n满足m•n>1,证明:f(m)、f(n)至少 2020-11-19 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …