早教吧作业答案频道 -->其他-->
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG
题目详情
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;
(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG的度数.

(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;
(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG的度数.

▼优质解答
答案和解析
(1)连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵
,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
(2)延长AB、FG交于H,连接HD.
∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形,
∴△ADH,△DHF为全等的等边三角形,
∴DH=DF,∠BHD=∠GFD=60°.
∵FG=CE,CE=CF,CF=BH,
∴BH=GF.
在△BHD与△GFD中,
∵
,
∴△BHD≌△GFD,
∴∠BDH=∠GDF,
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
∵四边形ABCD为平行四边形,∠ABC=90°,

∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵
|
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
(2)延长AB、FG交于H,连接HD.

∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形,
∴△ADH,△DHF为全等的等边三角形,
∴DH=DF,∠BHD=∠GFD=60°.
∵FG=CE,CE=CF,CF=BH,
∴BH=GF.
在△BHD与△GFD中,
∵
|
∴△BHD≌△GFD,
∴∠BDH=∠GDF,
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
看了 在▱ABCD中,∠BAD的平...的网友还看了以下:
AB为圆O的直径点C为圆O上一点AD和过点C的切线互相垂直垂足为点D过点C作CE垂直AB垂足为点E直 2020-03-30 …
1.已知等腰三角形ABC的底边BC=20,D为AB上一点,且CD=16,BD=12,则三角形ABC 2020-05-14 …
1.求证:对于给定的等边三角形,三角形内任意一点到三边的距离和为定值2.在∠B的两边上分别取点A, 2020-06-06 …
如图1,在Rt△ABC中,∠ACB=90°,D为CB上一点,且满足CD=CA,连接AD.过点C作C 2020-07-20 …
(2014•郯城县模拟)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠AB 2020-07-21 …
已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作 2020-07-21 …
如图,已知AB是半圆O的直径,AP为过点A的半圆的切线.在AB上任取一点C(点C与A、B不重合), 2020-07-22 …
如图,AB是O的直径,AD是O的弦,点F是DA延长线的一点,AC平分∠FAB交O于点C,过点C作C 2020-07-22 …
已知:如图,点D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,过C作CE 2020-07-29 …
如图:△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平 2020-08-03 …