早教吧作业答案频道 -->其他-->
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG
题目详情
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;
(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG的度数.

(1)若∠ABC=90°,G是EF的中点(如图1),求∠BDG的度数;
(2)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图2),直接写出∠BDG的度数.

▼优质解答
答案和解析
(1)连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵
,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
(2)延长AB、FG交于H,连接HD.
∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形,
∴△ADH,△DHF为全等的等边三角形,
∴DH=DF,∠BHD=∠GFD=60°.
∵FG=CE,CE=CF,CF=BH,
∴BH=GF.
在△BHD与△GFD中,
∵
,
∴△BHD≌△GFD,
∴∠BDH=∠GDF,
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
∵四边形ABCD为平行四边形,∠ABC=90°,

∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵
|
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
(2)延长AB、FG交于H,连接HD.

∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形,
∴△ADH,△DHF为全等的等边三角形,
∴DH=DF,∠BHD=∠GFD=60°.
∵FG=CE,CE=CF,CF=BH,
∴BH=GF.
在△BHD与△GFD中,
∵
|
∴△BHD≌△GFD,
∴∠BDH=∠GDF,
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
看了 在▱ABCD中,∠BAD的平...的网友还看了以下:
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
高数问题十分紧急设函数f(x)在(a,b)上可导连续,f(a)=0,a>0求证存在在ξ在高数问题十 2020-05-14 …
证明:设f(x)在[a,b]上连续,且恒为正,试证明:对任意的X1,X2属于(a,b).X1<X2 2020-06-03 …
求大神帮忙解决微积分中值定理的证明题设f(x)在[a,b]上连续,在(a,b)上有二阶连续导数,试 2020-06-10 …
积分第一中值定理的推广f(x)g(x)在a,b连续.g(x)不变号,求证:存在一点e∈a,b使∫( 2020-06-14 …
f(x)在[a,b]连续,在(a,b)二阶连续可导,证明存在c,使f(a)+f(b)-2f((a+ 2020-07-25 …
高等数学微积分连续间断高等数学微积分连续间断f(x)只在(a,b)上有定义,x=a和x=b算不算它的 2020-11-15 …
拉格朗日中值定理推广拉格朗日中值定理:若函数f(x)在区间[a,b]满足以下条件:(1)在[a,b] 2020-11-22 …
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f'(x)=g'(x),x属于(a,b 2020-12-23 …
设f(x)在[a,b]连续,在(a,b)二阶可导,连接点A(a,f(a))和B(b,f(b))的直线 2020-12-28 …