早教吧作业答案频道 -->数学-->
求大神帮忙解决微积分中值定理的证明题设f(x)在[a,b]上连续,在(a,b)上有二阶连续导数,试证明:至少存在一个ξ∈(a,b)使f(b)-2f[(a+b)/2]+f(a)=(b-a)²÷4×f''(ξ)
题目详情
求大神帮忙解决微积分中值定理的证明题
设f(x)在[a,b]上连续,在(a,b)上有二阶连续导数,试证明:至少存在一个ξ∈(a,b)使f(b)-2f[(a+b)/2]+f(a)=(b-a)²÷4×f''(ξ)
设f(x)在[a,b]上连续,在(a,b)上有二阶连续导数,试证明:至少存在一个ξ∈(a,b)使f(b)-2f[(a+b)/2]+f(a)=(b-a)²÷4×f''(ξ)
▼优质解答
答案和解析
泰勒公式:
f(x)=f(x0)+(x-x0)f'(x0)+1/2(x-x0)f''(c)
令x=a x0=(b+a)/2
得:f(a)=f((a+b)/2)+(a-b)/2f'((a+b)/2)+(a-b)^2/8f''(c1)
令x=b x0=(b+a)/2
得:f(b)=f((a+b)/2)+(b-a)/2f'((a+b)/2)+(b-a)^2/8f''(c2)
以上两式子相加可以不:
f(a)+f(b)=2f((a+b)/2)+(a-b)^2/4((f''(c1)+f''(c2))/2)
由戒指定理可知:至少存在一个ξ∈(c1, c2)∈(a,b)使:
(f''(c1)+f''(c2))/2 = f''(ξ)
带入上市:
f(a)+f(b)-2f((a+b)/2)=(b-a)^2/4f''(ξ)
急症:
至少存在一个ξ∈(a,b)使f(b)-2f[(a+b)/2]+f(a)=(b-a)²÷4×f''(ξ)
f(x)=f(x0)+(x-x0)f'(x0)+1/2(x-x0)f''(c)
令x=a x0=(b+a)/2
得:f(a)=f((a+b)/2)+(a-b)/2f'((a+b)/2)+(a-b)^2/8f''(c1)
令x=b x0=(b+a)/2
得:f(b)=f((a+b)/2)+(b-a)/2f'((a+b)/2)+(b-a)^2/8f''(c2)
以上两式子相加可以不:
f(a)+f(b)=2f((a+b)/2)+(a-b)^2/4((f''(c1)+f''(c2))/2)
由戒指定理可知:至少存在一个ξ∈(c1, c2)∈(a,b)使:
(f''(c1)+f''(c2))/2 = f''(ξ)
带入上市:
f(a)+f(b)-2f((a+b)/2)=(b-a)^2/4f''(ξ)
急症:
至少存在一个ξ∈(a,b)使f(b)-2f[(a+b)/2]+f(a)=(b-a)²÷4×f''(ξ)
看了 求大神帮忙解决微积分中值定理...的网友还看了以下:
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
要高考了,问一下,f(a+x)=f(a-x)等价于f(2a-x)=f(x),可以推出T=2a和对称 2020-06-10 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
求导问题若f(x)在点x=a的邻域内有定义,且除去点x=a外恒有[f(x)-f(a)]/(x-a) 2020-07-31 …
函数对称性问题f(a+x)=f(a-x)是说明这个函数f(x)关于直线x=a对称,而函数y=f(a 2020-08-01 …
抽象函数f(a-x)+f(x+b)=2c,求对称中心.f(a-x)+f(x+b)=2cf(x+b) 2020-08-02 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …
若一个函数关于x=a对称,则有f(x)=f(2a-x).如何得来若函数y=f(x)的图象关于直线x= 2020-11-08 …