早教吧作业答案频道 -->数学-->
如图,直线y=x+b经过点B(-,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其
题目详情
如图,直线y=
x+b经过点B(-
,2),且与x轴交于点A,将抛物线y=
x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线y=
x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.

x+b经过点B(-
,2),且与x轴交于点A,将抛物线y=
x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线y=
x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.
▼优质解答
答案和解析
(1)因为点B(-
,2)在直线y=
x+b上,所以把B点坐标代入解析式即可求出未知数的值,进而求出其解析式.根据直线解析式可求出A点的坐标及直线与y轴交点的坐标,根据锐角三角函数的定义即可求出∠BAO的度数.
(2)根据抛物线平移的性质可设出抛物线平移后的解析式,由抛物线上点的坐标特点求出E点坐标及对称轴直线,根据EF∥x轴可知E,F,两点关于对称轴直线对称,可求出F点的坐标,把此坐标代入(1)所求的直线解析式就可求出未知数的值,进而求出抛物线C的解析式.
(3)根据特殊角求出D点的坐标表达式,将表达式代入(2)所求解析式,看能否计算出P点坐标,若能,则D点在抛物线C上.反之,不在抛物线上.
【解析】
(1)设直线与y轴交于点N,
将x=-
,y=2代入y=
x+b得b=3,
∴y=
x+3,
当x=0时,y=3,当y=0时x=-3
∴A(-3
,0),N(0,3);
∴OA=3
,ON=3,
∴tan∠BAO=
=
∴∠BAO=30°,
(2)设抛物线C的解析式为y=
(x-t)2,则P(t,0),E(0,
t2),
∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,
t2),
把x=2t,y=
t2代入y=
x+3
得
t+3=
t2
解得t1=-
,t2=3
(1分)
∴抛物线C的解析式为y=
(x+
)2或y=
(x-3
)2;
(3)假设点D落在抛物线C上,
不妨设此时抛物线顶点P(m,0),则抛物线C:y=
(x-m)2,AP=3
+m,
连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,
又∵∠BAO=30°,
∴△PAD为等边三角形,
PM=AM=
(3
+m),
∴tan∠DAM=
=
,
∴DM=
(9+
m),
OM=PM-OP=
(3
+m)-t=
(3
-m),
∴M=[-
(3
-m),0],
∴D[-
(3
-m),
(9+
m)],
∵点D落在抛物线C上,
∴
(9+
m)=
[-
(3
-m)-m2,即m2=27,m=±3
;
当m=-3
时,此时点P(-3
,0),点P与点A重合,不能构成三角形,不符合题意,舍去.
当m=3
时P为(3
,0)此时可以构成△DAB,
所以点P为(3
,0),
∴当点D落在抛物线C上,顶点P为(3
,0).
,2)在直线y=
x+b上,所以把B点坐标代入解析式即可求出未知数的值,进而求出其解析式.根据直线解析式可求出A点的坐标及直线与y轴交点的坐标,根据锐角三角函数的定义即可求出∠BAO的度数.(2)根据抛物线平移的性质可设出抛物线平移后的解析式,由抛物线上点的坐标特点求出E点坐标及对称轴直线,根据EF∥x轴可知E,F,两点关于对称轴直线对称,可求出F点的坐标,把此坐标代入(1)所求的直线解析式就可求出未知数的值,进而求出抛物线C的解析式.
(3)根据特殊角求出D点的坐标表达式,将表达式代入(2)所求解析式,看能否计算出P点坐标,若能,则D点在抛物线C上.反之,不在抛物线上.
【解析】(1)设直线与y轴交于点N,
将x=-
,y=2代入y=
x+b得b=3,∴y=
x+3,当x=0时,y=3,当y=0时x=-3

∴A(-3
,0),N(0,3);∴OA=3
,ON=3,∴tan∠BAO=
=
∴∠BAO=30°,
(2)设抛物线C的解析式为y=
(x-t)2,则P(t,0),E(0,
t2),∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,
t2),把x=2t,y=
t2代入y=
x+3得
t+3=
t2解得t1=-
,t2=3
(1分)∴抛物线C的解析式为y=
(x+
)2或y=
(x-3
)2;(3)假设点D落在抛物线C上,
不妨设此时抛物线顶点P(m,0),则抛物线C:y=
(x-m)2,AP=3
+m,连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,
又∵∠BAO=30°,
∴△PAD为等边三角形,
PM=AM=
(3
+m),
∴tan∠DAM=
=
,∴DM=
(9+
m),OM=PM-OP=
(3
+m)-t=
(3
-m),∴M=[-
(3
-m),0],∴D[-
(3
-m),
(9+
m)],∵点D落在抛物线C上,
∴
(9+
m)=
[-
(3
-m)-m2,即m2=27,m=±3
;当m=-3
时,此时点P(-3
,0),点P与点A重合,不能构成三角形,不符合题意,舍去.当m=3
时P为(3
,0)此时可以构成△DAB,所以点P为(3
,0),∴当点D落在抛物线C上,顶点P为(3
,0).
看了 如图,直线y=x+b经过点B...的网友还看了以下:
(2011•惠州模拟)已知直线x-2y+2=0经过椭圆C:x2a2+y2b2=1(a>b>0)的左 2020-05-13 …
抛物线的顶点坐标对称轴求解!填空题1抛物线y=2(x-1)²的顶点坐标是对称轴是2抛物线y=-x² 2020-05-13 …
抛物线y=ax^2+bx+c开口向下,顶点在直线y=x上,且图像过原点,顶点到原点的距离为3根号2 2020-05-16 …
几道函数填空题1.抛物线y=x平方+x-12与x轴的交点坐标为,与y轴的交点坐标为.2.二次函数y 2020-05-23 …
关于圆锥曲线的问题若椭圆的中心为原点,焦点在x轴上,点P是椭圆上的一点,P在x轴上的射影恰为椭圆的 2020-06-04 …
1.设直线y=x/2+3交两坐标轴于A.B两点,平移抛物线y=-x^2/4,使其过A,B两点,求平 2020-06-14 …
抛物线y=x2-(m+2)x+9的顶点在坐标轴上,试求m的值.根据顶点坐标公式,顶点横坐标为x=m 2020-06-14 …
抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边 2020-06-14 …
已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A,B两点且对称轴为x=2求:1, 2020-07-22 …
如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一 2020-11-27 …