早教吧作业答案频道 -->数学-->
若f(n)=sin(nπ4+a),则f(n)•f(n+4)+f(n+2)•f(n+6)=.
题目详情
nπ |
4 |
nπ |
4 |
▼优质解答
答案和解析
f(n)=sin(
+a)
所以f(n+4)=sin( (
π+a)
=sin(
+a+π)
=-sin(
+a)
f(n+2)=sin(
π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)
所以f(n+4)=sin( (
π+a)
=sin(
+a+π)
=-sin(
+a)
f(n+2)=sin(
π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
n+4 n+4 n+44 4 4π+a)
=sin(
+a+π)
=-sin(
+a)
f(n+2)=sin(
π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a+π)
=-sin(
+a)
f(n+2)=sin(
π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)
f(n+2)=sin(
π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
n+2 n+2 n+24 4 4π+a)
=sin(
+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+
+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
π π π2 2 2+a)
=sin(
+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a+
)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
π π π2 2 2)
=-cos(
+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)
f(n+6)=sin(
π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
n+6 n+6 n+64 4 4π+a)=sin(
+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+
+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
3π 3π 3π2 2 2+a)
=sin(
+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+
+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
π π π2 2 2+a+π)
=-sin(
+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+
+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
π π π2 2 2+a)
=cos(
+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)
f(n)f(n+4)+f(n+2)f(n+6)=-sin22(
+a)-cos2(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)-cos22(
+a)=-1
故答案为:-1
nπ nπ nπ4 4 4+a)=-1
故答案为:-1
nπ |
4 |
所以f(n+4)=sin( (
n+4 |
4 |
=sin(
nπ |
4 |
=-sin(
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
所以f(n+4)=sin( (
n+4 |
4 |
=sin(
nπ |
4 |
=-sin(
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
n+4 |
4 |
=sin(
nπ |
4 |
=-sin(
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
=-sin(
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin22(
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
nπ |
4 |
故答案为:-1
nπ |
4 |
故答案为:-1
看了若f(n)=sin(nπ4+a...的网友还看了以下:
六年级学生摘扁豆,6.1班40人,平均每人摘23千克6.2班35人共摘扁豆880千克两班平均每人摘 2020-05-17 …
已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时 2020-06-02 …
一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB的坡度=1∶3,斜坡CD 2020-06-24 …
(10分)环境保护材料一:达坂城名扬天下,这个不毛之地有着比别处都多得多的东西——西北风。新疆的四 2020-07-04 …
2011年5月27日,印尼(印度尼西亚)日惹市附近发生里氏6.2级地震,地震发生在人口密集地区,造 2020-07-16 …
北京时间2011年2月22日7时51分39秒,新西兰南岛(43.4°S,172.7°E)发生里氏6 2020-07-18 …
2011年9月9日国家统计局发布,8月居民消费价格指数(CPI)同比涨6.2%,食品价格涨13.4% 2020-12-01 …
北京时间2014年3月15日16时59分,秘鲁南部沿海地区发生里氏6.2级地震,震源深度9.9公里。 2020-12-18 …
2011年8月份.全田居民清费价格指数(CPI)同比上涨6.2%。.为有效控制物价上涨,防范通货膨胀 2020-12-18 …
西藏拉鲁湿地,是世界稀有的、国内最大的城市湿地。它位于拉萨市的西北角,总面积6.2平方千米,为典型的 2021-01-18 …