早教吧作业答案频道 -->数学-->
设S1=1+112+122,S2=1+122+132,S3=1+132+142,…,Sn=1+1n2+1(n+1)2.设S=S1+S2+…+Sn,则S=(用含n的代数式表示,其中n为正整数).
题目详情
设S1=1+
+
,S2=1+
+
,S3=1+
+
,…,Sn=1+
+
.
设S=
+
+…+
,则S=______ (用含n的代数式表示,其中n为正整数).
1 |
12 |
1 |
22 |
1 |
22 |
1 |
32 |
1 |
32 |
1 |
42 |
1 |
n2 |
1 |
(n+1)2 |
设S=
S1 |
S2 |
Sn |
▼优质解答
答案和解析
∵Sn=1+
+
=
=
=
,
∴
=
=1+
=1+
-
,
∴S=1+1-
+1+
-
+…+1+
-
=n+1-
=
=
.
故答案为:
.
1 |
n2 |
1 |
(n+1)2 |
n2(n+1)2+(n+1)2+n2 |
n2(n+1)2 |
[n(n+1)]2+2n2+2n+1 |
[n(n+1)]2 |
[n(n+1)+1]2 |
[n(n+1)]2 |
∴
Sn |
n(n+1)+1 |
n(n+1) |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴S=1+1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=n+1-
1 |
n+1 |
=
(n+1)2−1 |
n+1 |
n2+2n |
n+1 |
故答案为:
n2+2n |
n+1 |
看了 设S1=1+112+122,...的网友还看了以下:
用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n>1). 2020-06-11 …
利用极限存在准则证明limn→∞[1n2+1+1n2+2+…+1n2+n]=1. 2020-06-11 …
描述氢原子光谱线的简洁而优美的公式称为广义巴尔末公式:1λ=RH(1m2-1n2)(m=1,2,3 2020-07-08 …
设S1=1+112+122,S2=1+122+132,S3=1+132+142,…,Sn=1+1n 2020-07-18 …
设S1=1+112+122,S2=1+122+132,S3=1+132+142,…,Sn=1+1n 2020-07-18 …
下列级数中绝对收敛的是()A.∞n=1(-1)n1n2+1B.∞n=1(-1)nn2+2n2+1C 2020-07-31 …
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(1)用数学归纳法证 2020-08-01 …
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(Ⅰ)用数学归纳法证 2020-08-01 …
用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n>1). 2020-08-03 …
(2012•武汉元月调考)设S1=1+112+122,S2=1+122+132,S3=1+132+1 2020-12-02 …